Use of consistent operational ensemble variational assimilation
to estimate and diagnose analysis and background error covariances

Loik Berre, Gerald Desroziers,
Laure Raynaud, Remi Montroty, and Florian Gibier

Méteo-France/CNRS, CNRM/GAME
Toulouse, France

Abstract: The simulation of the error evolution is discussed from arf@r point of view, including the rep-
resentation of non linear effects. The operational ensemdltiational assimilation at Météo-France is then
briefly summarized and illustrated. Itis also shown how sutlensemble assimilation can be used to diagnose
analysis effects on the error covariances. A combined usgofation-based and ensemble-based estimates is
finally discussed.

1 Simulation of the error evolution with perturbed assimilations

1.1 Ensemble of perturbed assimilations versus determiniie square-root filters

The principles of ensemble data assimilation (EnDA) aratredly simple and general. In this study, we
will focus on the use of perturbed assimilations, based, mom ltand, on explicit observation perturbations
(representative of observation errors), and on the othed,han background perturbations which are either
fully implicit (from the perturbed previous data assimiiat cycles) or partly explicit (to represent model error
contributions).

Applying this approach to a Kalman filter algorithm corresge to an ensemble Kalman filter (EnKF). Sim-
ilarly, its application to a variational algorithm leadsan ensemble variational assimilation (EnVar), such as
the one which is operational at Météo-France since 20Q&h &n EnVar system is very easy to implement
and run from an existing variational system, as each mensbieasically quite similar to a usual variational
assimilation experiment (albeit less expensive, depegnftininstance on horizontal resolution and number of
outer-loops).

It may be mentioned also that there are other variants cdk¢elministic square-root filters (e.g. Tippett et
al 2003). They are based on a linear transformation of backgr perturbations into analysis perturbations.
However, these square-root filters are more restrictivereesextent, as will be briefly discussed in section 1.2
also. Firstly, in order to make the transformation simgieytare based on an assumption that their gain matrix
is optimal, which is usually not correct (due to samplingseoand model error approximations for instance).
Secondly, because the analysis perturbation update i/dimear, they do not represent non linear effects of
analysis schemes such as 4D-Var. Thirdly, such squaréfitteos are also often (if not always ?) restricted to a
low-rank ensemble-based gain matrix, instead of the reéer¢possibly hybrid) full-rank gain used in 4D-Var
for instance.

For these reasons, using an EnVar system can be seen aslpieetban building up and using a more restrictive
deterministic square-root filter system.
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1.2 Analysis error and analysis perturbation equations

From a formal point of view, ensemble data assimilation isag ¥o simulate the analysis error equation (e.g.
Berre et al 2006). For the sake of simplicity, we will starttwihe usual linear form of the analysis equation,
and discuss the non linear case later on.

The (unperturbed) analysis statecan be written as a linear combination of a backgroxnend observations
y, with K the specified gain matrix, arid the observation operator :

Xa = (I — KH)xp + Ky

The same kind of equation, with the same operators, can ltemwiformally for the true state,, with new
specific inputs, corresponding to the true states in modibaservation spaces :

X, = (I = KH )X, + Ky

The analysis error equation is given by the difference betwibese two equations, and again the same kind of
equation appears, with new specific inputs, namely backgreurorse, and observation erroes, :

e = (I —KH)ey + Keg

So this simple equation indicates that the analysis errolves in a similar way as the usual analysis state
equation : while the inputs change, the basic operatordharsame, namely— KH andK.

Another nice feature is that this equation is true eveld is suboptimal. And the form of the analysis error
equation indicates that applying this effective suboptiki@o observation errors, and the associdtecKH to
background errors, is a way to take this suboptimality (&meéffect on the analysis error) into account.

Moreover, this equation can be shown to be also valid for &iya®n linear analysis system such as 4D-Var
(Desroziers et al 2009). In practice, using perturbed nuali analyses is in fact a way to represent non linear
effects in this analysis part of the error evolution. Thisiimilar to the representation of non linear effects in
the forecast part of the error evolution, through the useesfusbed non linear forecasts (instead of using a
linear model for the forecast evolution of initial pertutibas).

These last two features (about suboptimality and non liygauggest that using observation and background
perturbations, to produce analysis perturbations (in alimear way), is likely to be more general and appro-
priate than using a direct linear transformation of backgtperturbations into analysis perturbations (as done
in deterministic square-root filters).

The equation of the analysis perturbation can be derivedgim#ar way as for the analysis error. The perturbed
analysisxj is a linear combination of perturbed inpugsandy’:

X5 = (I —KH)x, + Ky’

The equation of the analysis perturbatigncorresponds to the difference between this perturbed sisadynd
the unperturbed analysis:

ga= (I —KH)& +Keg

It appears that the perturbation equation is again veryedoghe analysis error equation, with new specific
inputs, namely background perturbaticggsand observation perturbatiows.
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So this illustrates the fact that an ensemble of perturbsiinlations mimics in a relevant way the manner in
which errors evolve in the data assimilation cycle.

1.3 Formal comparison with the NMC method

To emphasize further this point, the analysis error andugaaition equations can be compared with the equation
of the analysis incrememdx = X5 — Xp, Which is the basic ingredient in the NMC method (e.g. Betia 2006):

ox = —KHep +Keq

In the analysis increment equation, the inputs are the sanie the analysis error equation, but one of the
operators is different. In fact,— KH, which can be seen as a high-pass filter (Daley 1991), isceglay
—KH, which is a low-pass filter. This is consistent with the fdwttestimated correlation functions are too
broad in the NMC method, compared to ensemble assimilagian Belo Pereira and Berre 2006).

More generally, this kind of formal comparison indicateattthe analysis error equation is better simulated in
EnDA than with the NMC method.

1.4 Open issues in the error simulation technique

There are of course open issues in the way of simulating tioe evolution with ensemble assimilation. Sup-
pose for instance that we want to simulate errors in a 4D-Yalecwith a high resolution model. Due to
numerical cost, one may be interested by two possible appations in the ensemble simulation of errors.

Firstly, one may consider to reduce the horizontal resmtutif the model, which is relatively classical. Sec-
ondly, one may approximate the reference gain matrix of 4-¥ither with 3D-Fgat, or with 4D-Var and
fewer outer loops. Another possibility is to use either Eni¢FEETKF, in the error simulation part, but in this
case the gaiK in this part will be derived from the ensemble informatiosesgtially. In other words, the error
simulation will be based on a low-rank ensemble-based gaitnixn which potentially can be a rather coarse
approximation of the reference (possibly hybrid) fullkagain used in 4D-Var.

For reasons evoked in section 1.1, using a "consistent dsleevariational assimilation” (i.e. a variational
approach in both perturbed and unperturbed componentsisgaeferable than using either EnKF or ETKF in
the error simulation part (together with a variational sysin the deterministic part).

2 The operational Météo-France ensemble variational assimilation

2.1  Summary of the EnVar system

The main features of this system are briefly evoked here, asimary of their description in Berre et al (2007).

This ensemble is made of 6 perturbed global members, witication T359, 60 vertical levels, and 3D-Fgat
for the Arpege model. This system will be upgraded in 2009u$ing 4D-Var with one outer loop, 70 vertical
model levels, and truncation T399.

An optimized spatial filter is applied to error variancespider to increase the robustness of variance estimates.
Noise to signal studies (Raynaud et al 2009) indicate thtt stich an optimized spatial filter applied to the
6-member variance estimate, the relative error estimat@oiance (of the background error variance field) is
around 10%, which is similar to the quality of raw variancssreated from a 21-member ensemble (according

ECMWF Workshop on Diagnostics of data assimilation systenmfigpmance, 15-17 June 2009 49



BERRE, L. ET AL: USE OF CONSISTENT OPERATIONAL ENSEMBLE VARIATIONAL ASSIMIATION...

to ﬁ = 2—20 ~ 10%). Moreover, background error standard deviationsrdtatéd by a factor 1.3, in order to
represent model error contributions.

The Arpege 4D-Var uses these sigmab’s of the day for vorti@hd thus, implicitly, also for the associated
balanced parts of temperature, surface pressure and ein@r)) and this is operational since July 2008. The
upgrading in 2009 will include an extension of this, by usihg ensemble to specify flow-dependent variances
also for specific humidity and for the unbalanced parts ofgerature, surface pressure and divergence. This
extension contributes to additional positive impacts,artipular due to flow-dependent humidity variances.

An experimental coupling with regional models has beeni@drmout also, both at 10 km resolution with the

Aladin model (Desroziers et al 2007), and at 2.5 km resatuwiith the Arome model (Brousseau et al 2007).

This is applied in order to estimate the static part of regi@rror covariances, and an extension to specify
flow-dependent covariances is also investigated.

2.2 Flow-dependent error variances and their impact

Figure 1: Left panel: ensemble-based background error d#ah deviations for vorticity near 500 hPa
(isoline interval:10~%s~1). Right panel: mean sea level pressure field. Both fieldsalid wn 8 December
2006.

The left panel of Figurd is an example of field of sigmab’s of the day, for vorticity n880 hPa, on the 8th of
December 2006. Large values of sigmab’s are in blue, so tteelpaated over Europe for this situation.

The right panel shows the associated weather situatioeynimstof mean sea level pressure. This indicates the
occurence of a severe winter storm over France, which isexiad to large values of sigmab’s, in accordance
with expected uncertainties in this kind of intense situati

As illustrated by Figure 7 in Berre et al (2007), it should bentioned also that the largest flow-dependent
changes of the variance field (compared to climatologicabwmae fields) are relatively localized spatially. This
suggests that one should not expect a huge and systematiovienpent when using flow-dependent sigmab’s
instead of static sigmab’s, but rather positive impactsciisan be relatively localized in space and in time, and
which are connected to intense weather situations. Thisrgeexpectation will be illustrated experimentally
a bit below in this section.

The impact of this kind of flow-dependent sigmab’s is illasd in Figure? for a severe winter storm which
occured over France on 10 February 2009. The red isolineesmond to 36 hour forecasts of mean sea level
pressure, based on static sigmab’s in the left panel, arelbas sigmab’s of the day in the right panel. The
blue isolines correspond to the verifying analysis. It @gpéhat using flow-dependent sigmab’s has a positive
impact on the forecast of this severe storm, in terms of depthe low and gradient intensity.

Figure3 is another illustration for a case of tropical cyclone neadslgascar, taken from a study by Montroty
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Figure 2: Severe winter storm over France on 10 February 200%e red isolines correspond to 36h
forecasts of mean sea level pressure, while the blue isoéirefrom the verifying analysis. Left panel: 36h
forecast based on static sigmab’s. Right panel: 36h forglesased on flow-dependent sigmab’s.

(2008). The left panel shows trajectory forecasts, andefigphnel corresponds to forecasts of intensity. The

black line is the verifying observation, the yellow curves based on static sigmab’s, and the purple curves are
based on flow-dependent sigmab’s. It can be seen that ugrftptirdependent sigmab has a positive impact

on the trajectory and on the intensity of this tropical cyeloA detailed case study has shown that this positive
impact arises from a beneficial amplification of analysisentents, in some important sensitive areas.

Extended impact runs have been carried out over severalhtgygmtriods to evaluate the average impact of
flow-dependent sigmab’s.

This is illustrated by Figurd, where the three panels correspond to the decrease of tpetgatal forecast
RMS over Northern America, as a function of height and fosecange, when using flow-dependent sigmab’s
instead of static sigmab’s. The blue isolines corresporaifositive decrease of the RMS, i.e. to an improve-
ment due to the use of flow-dependent sigmab’s.

It appears that using flow-dependent sigmab’s has a pogitipact on the average, which tends to be more
pronounced during the two winter seasons than in autumns igHikely to be related to the more intense
cyclogeneses in winter.

Moreover, examination of time series of RMS indicates thasé average improvements correspond to a ten-
dency to reduce local RMS peaks, as shown by Figure 8 in Berag (2007). This is consistent with the
aforementioned idea that using flow-dependent sigmabikdlyIto be particularly beneficial for local intense
weather situations.

3 Diagnostics of analysis and background errors

3.1 Expressions of the analysis error covariance

When the analysis is optimal, a classical estimate of théysiseerror covariance isA = (I — KH )B, which
indicates that analysis errors are expected to be sma#lartthckground errors.

The analysis error estimate which is provided by ensemldendlation (based on an ensemble of perturbed
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Figure 3: Forecasts of the tropical cyclone Jokwe, based taticssigmab’s (in orange) and on flow-
dependent sigmab’s (in purple), as a function of forecasgea The verifying observation is in black.
Left panel: trajectory forecast. Right panel: intensitydcast.

assimilations) is more general, as it is valid also for a gtibwal analysis system :

A=(l—KH)B(I —KH)T+KRKT

As shown by this equation, the analysis error equation i$ ambie complex in the general case, and ensemble
assimilation can be an efficient way to handle this compfeXit particular, ensemble-based estimates\ of
andB can be compared, in order to diagnose analysis effects.

3.2 Local covariance estimates

One interesting thing to look at is the horizontal distribotof error standard deviations. This is shown for
instance in Figure 7.ain Belo Pereira and Berre (2006) fokdpaund errors of vorticity near 500 hPa, averaged
over a one-month period. It can be seen that sigmab valuddddre larger in data-sparse oceanic areas such
as the Pacific and the Atlantic, and that relatively smaligi’s are found in data-dense areas such as Northern
America and Europe.

It is also possible to calculate the difference betweemedtis of sigmab’s and sigmaa’s, calculated with the
energy norm in this case. This is shown in Figbrdor statistics averaged over a one month period. One can
notice that the error reduction is stronger in data-densasaand also over isolated islands where radiosondes
are available.
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Figure 4: Reduction of average geopotential RMSE over NwrttAmerica, when using flow-dependent
sigmab’s, instead of static sigmab’s, as a function of hie{ghaxis) and forecast range (x axis). Blue
isolines correspond to a positive impact of flow-dependigmhab’s, while the black isoline corresponds
to a neutral impact. Isoline spacing: 0.5m. Left: Novemb@0@ - January 2007 (3 months). Middle:

February - March 2008 (1 month). Right: September - Octol¥72(1 month).
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Figure 5: Difference between local estimates of sigmab agohaa, averaged over a one-month period,
with a total energy norm.

3.3 Global covariance estimates

Another typical diagnostic corresponds to error variarmmerga. This is shown in Figure 2.a of Stefanescu et
al (2006) for surface pressure, with a full curve for the lgmokind and a dashed curve for the analysis. These
two spectra have their maximum in the large scales, whigypisal for a variable like surface pressure.

Moreover, the analysis error variance tends to be smaber tihe background error variance. This is consistent
with the expectation that errors tend to be reduced by thigsisalt can be noticed also that the error reduction
tends to be larger in the large scales than in the small scAleshown in Daley (1991) for instance, this is
consistent with the expectation that the error reductianagimum for components at which the amplitude of
background error is maximum, compared to the amplitude sépiation error.

Itis also interesting to look at vertical profiles of erracarstlard deviations. Figure 2.c in Stefanescu et al (2006)
is an example for temperature. The full curve is for the bamligd, whereas the dashed line is for the analysis.
It can be seen that the two profiles are relatively similad, #at the analysis error tends to be smaller than the
background error. This is again consistent with the expiectahat errors tend to be reduced by the analysis.

It can be noticed also that the error reduction tends to lgeefein the mid-troposphere than near the surface.
This is likely to be related to the fact that background eviame larger scale in the mid-troposphere. This allows
their reduction to be relatively strong through the analysep.
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It is also interesting to diagnose how analysis errors evoito forecast errors, in the ensemble assimilation.
This is illustrated in Figure 16 in Belo Pereira and BerreO@Q by comparing vertical profiles of wind error
standard deviations. The full line is for the analysis, dmel dotted line is for the associated 6h forecast. It
can be seen that there is an increase of spread during theegfa$b, which is likely to correspond to effects of
baroclinic instabilities for instance (knowing that thevas no model error simulation in this ensemble).

It may be mentioned that data impact studies can be carriedlsnby using ensemble assimilation. The idea
is to compare the analysis spread when using different elen systems. This has been done by Tan et al
(2007) for instance, in order to examine the impact of widdids and radiosondes.

4 Combined use of innovation-based and EnDA estimates

One way to validate ensemble sigmab estimates is to cacimabvation-based sigmab estimates, using tech-
nigues proposed for instance by Hollingsworth and Longl{&@86) and Desroziers et al (2005). Following
Desroziers et al (2005), it can be shown in fact that the ¢amee between the analysis increment and the
innovation is an estimate of the background error covadaimcobservation space.

In principle, this can be calculated for a specific date, hehtthe local sigmab is calculated from a single
error realization, as is if we had only ONE member in an ensemBonversely, if we calculate local spatial
averages of these sigmab’s, the sample size will be inaleasel comparison with ensemble estimates can be
considered.

Figure 6 in Berre et al (2007) is an example of comparison 1®$17 for a specific single date. The top panel is
ensemble estimates of sigmab, with local spatial averagersac500 km radius. The bottom panel corresponds
to innovation-based sigmab estimates, using Desroziersiila, with a similar 500 km spatial average. It is
striking to notice that similar patterns can be seen in theseindependent estimates, such as large sigmab
values over Central Pacific, and small sigmab values ovethBou Atlantic. So this kind of comparison is a
way to validate ensemble estimates, and this may be also toveayimate model error covariances in particular,
as proposed for instance by Daley (1992).

EEEEE T R

Figure 6: Estimates of sigmab for the channel HIRS-7, on 24uday 2009 at 00 UTC, centered and
normalized. Top left: innovation-based estimates. Toptrignsemble 3D-Fgat estimates. Bottom left:
ensemble 4D-Var estimates.

More recently, these diagnostics have been used to evahemssibility to use a 4D-Var ensemble at Météo-
France, instead of the current 3D-Fgat ensemble. The tbpdetl of Figures is the innovation-based estimate
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of sigmab for the channel HIRS-7, from the reference unpeet 4D-Var system. The top right panel is the
3D-Fgat ensemble estimate, and the bottom left panel is Ehv'at ensemble estimate. It appears that the
ensemble 4D-Var estimate is much closer to the innovataseth estimate (see the green areas over Central
Pacific for instance ; the global correlation with the inrtovMa-based map is increased from 0.2 to 0.6 when
replacing ensemble 3D-Fgat by ensemble 4D-Var).

This is also consistent with the expectation that ensembl&/@ should simulate the error evolution of the
reference deterministic 4D-Var system in a more accurayg(thianks to the use of the 4D-Var gain matrix in the
analysis perturbation update). Impact experiments ineliaiso that using flow-dependent sigmab’s provided by
ensemble 4D-Var contributes to an additional positive iohpeompared to the use of flow-dependent sigmab’s
from ensemble 3D-Fgat. So these results support the idesetdD-Var in the ensemble assimilation system,
instead of the current ensemble 3D-Fgat.

Another important aspect to evoke is the possibility torsate model error covariances when combining in-
novations and ensemble assimilation. Typicallyjcan be written as the sum of analysis errors evolved by the
modelM, and model error covariances containedin

B=MAM"+Q

As (more or less) proposed by Daley (1992), ensemble assiatilcan be used to estimate the evolved analysis
error component. Moreover, as shown in the previous slidesyations can be used to estimate background
errors in observation space. This indicates that a natecahique to estimat® is to use differences between
ensemble- and innovation-based estimates of covariances.

5 Conclusions and perspectives

Ensemble assimilation allows analysis/background eryofirg to be simulated and diagnosed. Using an
ensemble of perturbed 4D-Var assimilations is relativelgyeto implement, and it allows non linear analysis
effects to be represented in the error simulation.

Flow-dependent covariances can be estimated, with pesitipacts on intense/severe weather events such as
mid-latitude storms and tropical cyclones. Diagnostic parison between analysis and background spread

provides information about analysis effects. Moreovemparisons with innovation-based estimates can be

carried out, for validation, and also for estimation of miogteor covariances.

Some examples of open issues are the optimization of the gmlation (i.e. choice of a good compro-
mise between approximations of the resolution and anag@ieme used in the deterministic part), and the
covariance filtering technique (e.g. spectral/waveletnaiged filters versus Schur filter for instance).
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