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ABSTRACT

The application of the normal-mode functions to diagnose the atmospheric energy spectra in terms of balanced and inertio-
gravity (IG) motions is presented. Results of the normal-mode diagnosis of the operational ECMWF analysis from July
2007 shows that roughly 10% of the wave (zonal wavenumber k6=0) motions is associated with IG waves and that the
large-scale IG flow is confined to the tropics. It is illustrated how the normal-mode space can be used to intercompare the
transient structure of large-scale waves in different analysis systems. Applied to both analysis and background fieldsthe
normal-mode expansion is used to diagnoze average and systematic analysis increments; the latter are interpreted as the
analysis system bias.

1 Introduction

Normal modes are eigensolutions of the linearized primitive equations (Dickinson and Williamson 1972). The
derivation of three-dimensional orthogonal normal-mode functions (NMFs) followingKasahara and Puri (1981)
is provided in Appendix. Derived wave structures divide atmospheric motions into two kinds. The first kind
consists of the eastward- and westward-propagating waves with high frequencies known as the inertio-gravity
(IG) waves, denoted by EIG for eastward propagation and WIG for westward propagation. These motions can
be represented predominantly by the velocity potential; therefore, they are essentially irrotational or divergent
motions. In contrast, the second kind consists of the westward-propagating waves with low frequencies con-
nected with the meridional variation of the horizontal component of the Coriolis vector. The second-kind of
waves are represented essentially by the stream function, namely rotational, denoted by ROT; these waves are
often referred to as the planetary waves similar to the Rossby-Haurwitz wave. The distinction between the
ROT waves and the Rossby-Haurwitz wave is that, while the latter is purely non-divergent, the ROT waves
include the large-scale effect of the divergence due to the curvature of spherical coordinates and the variation of
latitude. Because the ROT waves are also quasi-geostrophicin nature, they are often referred to as a balanced
mode in contrast to the IG waves which are ageostrophic and unbalanced.

In numerical weather prediction (NWP) models, normal modeshave been used for the initialization purpose
(e.g. Wergen 1988; Kleist et al. 2009). On large scales, the IG modes are most relevant in the tropics, as a
significant part of the large-scale tropical variability isassociated with the Kelvin, the mixed Rossby-gravity
and other IG waves characterized by small phase speeds and equatorial trapping. Their diagnosis relies on
mass-field information such as the outgoing longwave radiation (Wheeler and Kiladis 1999) and brightness
temperature (Yang et al. 2003) or model outputs (e.g.Lin et al. 2006). On the contrary, by applying normal
modes, the mass and wind fields of the waves are analyzed simultaneously. Since atmospheric motions are
nonlinear, we cannot clearly separate them into the high-frequency IG and low-frequency ROT motions except
in case of linearized equations around some specific background states. Nevertheless, the normal modes which
are orthogonal and complete in functional representation and handle both the velocity and mass consistently
are useful for analyzing the observed states of the real atmosphere, as shown by numerous studies.
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The present application of the normal-mode expansion is performed with the purpose to estimate the contri-
bution of IG motions to the 3D global flow in the ECMWF system, to analyze the balanced and IG enegry in
terms different vertical and horizontal scales, and to diagnose some properties of the assimilation system by
studying analysis increments. This paper extends results presented iňZagar et al. (2009a,b,c) and the reader is
refered to these papers for details of methodology and further results.

2 The methodology of normal mode

The application of NMFs followingKasahara and Puri (1981) represents the three-dimensional global data vec-
tor
(
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The data vector includes two wind components and the mass-field variableP, defined asP = Φ + RTo ln(ps).
In this formula,Φ = gh is the geopotential,R is the gas constant,To is the globally average temperature onσ
levels,g stands for gravity, whileps is the surface pressure field.

The four-component indexν = (k,n,m, p) depends on the values of the zonal wavenumberk, meridional mode
index n and vertical mode indexm, in addition to the wave type, denoted by indexp. Three values ofp
correspond to the EIG, WIG and ROT modes. The truncation indicesNm, Nk andNn correspond, respectively, to
the number of vertical modes, the number of waves along a latitude circle and a maximal number of meridional
modes for a given(k,m, p) combination. FollowingKasahara (1976), the mixed Rossby-gravity (MRG) mode
is included as then = 0 ROT mode (i.e.,ν = (k,0,m,3)) and the Kelvin mode is then = 0 EIG wave (i.e.,
ν = (k,0,m,1)). Other parameters are defined in the Appendix. The complex expansion coefficientsχν are
non-dimensional. In order to represent the total energy in modeν , χν (χν)∗ are multiplied by(gHeq)

1/2 which
gives energy in units m2s−2 or Jkg−1.

The time-averaged analysis increment in modeν is defined as

∆χν =
1

Nsmpl

Nsmpl

∑
t=1

[

χan
ν (t)− χbg

ν (t)
]

, (2)

where the superscripts ’an’ and ’bg’ denote analysis and background fields, respectively. The parameter∆Eν ,
defined as

∆Eν = ∑
x

gHeq,ν

[

χan
ν (χan

ν )∗− χbg
ν

(

χbg
ν

)∗ ]

, (3)

can be used to represent the average tendency of the assimilation system to place or subtract the energy to/from
a particular mode

Systematic analysis increments are indicative of the analysis system bias if they have amplitudes comparable to
those of typical analysis increments (Dee 2005). This can be inspected by comparing Eq. (2) with the following
equation which describes the energy distribution in increment fields at any analysis step:

Ein
ν (t) = gHeq,ν

[(

χan
ν − χbg

ν

)(

χan
ν − χbg

ν

)∗ ]

. (4)

The distribution of time-averaged energy,Ein
ν (t), shows parts of the modal space where the assimilation step on

average makes most significant changes in the background.
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Figure 1: Total energy in balanced and inertio-gravity motions as a function of the zonal wavenumber
obtained by averaging over 124 analyses for July 2007. Summation is performed over all(m,n).

3 Large-scale circulation in July 2007

The energy spectra separated into ROT and various IG components are presented in Fig.1 as a function of
the zonal wavenumber. In Fig.1a, the MRG mode was included among the ROT modes while in Fig.1b it is
shown separately and its spectrum is added to that of IG motions as the MRG wave is usually considered the IG
mode (e.g.,Wheeler and Kiladis 1999). Thus the total IG motion is denoted IG+MRG. The zonally-averaged
state (k = 0) is not included in the plots as it contains an order of magnitude more energy than the wave motions
(k > 0). It can be seen that the balanced spectrum has the−3 slope over many scales smaller than the synoptic
injection scale (k = 7−8) whereas the slope of the IG motions across the same wavenumber range is close to
−5/3. At the longest scales (k = 1−5) the slope of the IG spectra is close to−1. The slope for the MRG wave
appears flat fork< 5 and it follows a−3 law at shorter scales; i.e. the MRG waves behave as balancedmotions.
The KW spectra show the same−3 slope except at the longest scales where the slope is close to −5/3, just
like for the longest scales of the balanced motion. Figure1 somewhat differs from the results for the ECMWF
system inŽagar et al. (2009a) andŽagar et al. (2009b); the reason is the orography field which in the previous
paper was retrieved from MARS as a surface field and did not exactly match model-level fields causing noisy
spectra at smaller scales.

The relative contribution of IG motions to the total wave motion is around 10%. This is larger % than reported
previously (Tanaka and Kimura 1996) but it agrees with laboratory experiments ofWilliams et al. (2008) and
an increased level of IG energy in more recent analyses is expected given higher resolutions and improved
model complexity in the tropics. There is more IG energy in EIG than in WIG motions and this is almost
completely due to the Kelvin wave which is the most energeticIG motion.

Figure2 presents circulations associated with balanced and IG modes averaged over the whole month for a
single level in the upper and the lower troposphere. Notice that the length of wind vectors for balanced winds
is three times smaller than for the IG flow. Nevertheless, it can be seen that the IG motions represent an
important component of the large-scale flow in the tropics, especially over the Indian ocean and the Pacific. In
agreement with a substantial role of the longest Kelvin waves in the tropics, a comparison of the lower and the
upper troposphere in Fig.2b,d can be used to argue about the validity of the classical ’first baroclinic mode’
picture of the tropics applied in many simple models of the tropics (i.e.,Gill 1980 and its follow-on studies).
Figures2b,d can be further split into contributions from various eastward- and westward-propagating modes as
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Figure 2: Average July 2007 (a,c) ROT+MRG and (b,d) IG circulations at a sigma level (a,b) 50 (∼212
hPa) and (c,d) 70 (∼671 hPa) according to the ECMWF analyses. Wind vectors in (a,c) have three times
larger scaling factor than in (b,d). Positive values of the Pvariable are shaded and negative values are
drawn by isolines. In (a,c) deviations from the global average of P are drawn with (a) positive contouring
interval 150 m starting from+150 and negative contouring interval 300 m starting from−300 m, and in (c)
contouring interval 50 m starting from±50. In (b,d) the positive contouring interval is 20 m starting from
+10 m while negative values are drawn every 50 m starting from−50 m.

illustarted inŽagar et al. (2009b).

In order to illustrate the potential of NMFs, we choose to present the temporal evolution of the MRG wave
energy in three analysis datasets (Fig.3) including the NCEP analyses and the NCEP/NCAR reanalyses in
addition to ECMWF. The energy levels are very different in the three datasets because of differences in the
analysis systems, especially the top model level. The NCEP/NCAR reanalysis system is produced at a lower
horizontal resolution and the top model level is located at∼2.7 hPa. The operational NCEP model was available
on the T382 grid and its 64 vertical levels extend up to 32 Pa (around 60 km). On the other hand, the operational
ECMWF model consists of 91 vertical levels up to 1 Pa (around 80 km) and horizontal T799 grid. It can be
seen in Fig.3 that, while the three solutions exhibit some similarity, there is a significant difference between the
NCEP/NCAR and the other two datasets. Solutions nevertheless qualitatively agree about a number of episodes
with increased energy in MRG motions: 15-16 July and 24 July in wavenumberk = 2, 1 July and 14 July in
k = 7 and on 8-10 July ink = 3. Overall, the energy evolution appears rather similar in ECMWF and NCEP
datasets with an active period between 4 and 18 July. In NCEP/NCAR the energy is concentrated atk = 2 most
of time although the period from about 8 to 18 July is somewhatmore energetic than the rest.

The average energy distribution in(m,k) space appears similar in NCEP and ECMWF (not shown); they both
pick the zonal wave numberk= 3 and the second vertical mode for the average energy maximumbut the energy
level is about 5 times greater in ECMWF than in NCEP analyses.While we do not have previous quantitative
estimates to compare with, we notice that much of the difference between ECMWF and NCEP is accounted for
by the MRG waves at the six upper-most levels in the ECMWF system which are located above 0.30 hPa.

An example of the difference between NCEP and ECMWF related to their vertical model depth is the event
on 17 July in the ECMWF system (Fig.3a). Its details can be studied by filtering back to grid-pointspace the
wavenumberk = 3 at which the event appeared. The horizontal structure of the wave at model level 6 (∼0.28
hPa) at three subsequent times, shown in Fig.4, illustrates the strengthening and westward propagation of the
k = 3 wave over the Atlantic. The peak strength was at 12 UTC on 17 July, which was preceeded by a westward
movement with speed around 18 m/s and amplitude growth. The westward propagation during the following
24 hours occurred at a nearly constant speed of 30 m/s with amplitude weakening. In the(m, t) space this
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Figure 3: Evolution of the mixed Rossby-gravity wave energyin July 2007. (a) ECMWF, (b) NCEP and (c)
NCEP/NCAR. Contouring levels are (in units of m2/s2): (a) every 60, starting from 60, (b) every 20, starting
from 20 and (c) every 6, starting from 6. Ticks on the y-axis are drawn at 12 UTC on every other day.

event appears stationary which would imply very small vertical group velocity and therefore no vertical energy
propagation. However, the short duration of the event and additional numerical damping at the top model levels
makes an in-depth discussion of the event difficult.

4 Energy distibution of average and systematic analysis increments

Two-dimensional energy distibution of analysis increments defined by Eq. (4) is shown in Fig.5 separately for
ROT, EIG and WIG motions. Panels (a-c), which show the(n,m) distribution, can be compared with Fig. 7
(panels d-f) inŽagar et al. (2009a) showing the energy distribution of full fields. The comparison shows that the
largest changes are made in the most energetic part of the wave flow for all three motion types. The maximal
ROT energy in(n,m) = (1− 2,2) in Fig. 5a corresponds to large increments made at the model top levels.
The secondary maximum centered at(n,m) = (4,6) which corresponds to the levels lower in the stratosphere
and in the upper troposphere. About 60% of the total increment wave energy is in the ROT modes, the rest
is about equally divided between the EIG and WIG modes. The zonally averaged state is not included in the
summation shown in the two figures. Addingk = 0 would changes panels (a-c) by incresing energy amounts
in n = 1−3 across a range of leadingm in both EIG and WIG motions (figures not shown). Around 30% of
the total increment energy is in thek = 0 state but the relative contribution of balanced and IG modes remains
about the same. On the contrary, thek = 0 state in full fields is predominantly balanced (Žagar et al. 2009a).

The(n,k) distribution (Fig.5d-f) can be compared with the(n,k) energy distribution of time-averaged analysis
increments, defined by Eq. (3), used as an indication of the analysis system bias (Fig.6). For the WIG and EIG
modes, two distributions appear rather similar, especially in the appearance of the maximum in(n,k) = (2,0).
The negativek= 1 Kelvin wave bias suggests that overall the assimilation system in July 2007 tended to supress
the Kelvin wave (Fig.6b). Positive biases in ROT modes are largest in(n,k) = (1−2,2) which corresponds
to m = 2 i.e., the top model levels as discussed inŽagar et al. (2009). The comparable amplitudes in Fig.
5 and Fig. 6 associated with the leading vertical modes and longest zonal scales are due to difficulties with
the treatment of mesospheric levels in the model and assimilation. This is further illustrated in Fig.7 which
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Figure 4: Horizontal structure of the k= 3 mixed Rossby-gravity wave in the ECMWF analyses at model
level 6 (∼ 0.28 hPa). (a) 17 July, 00 UTC, (b) 17 July, 12 UTC, (c) 18 July,12 UTC. P isolines are drawn
every±10 m, starting from±10 m and the zero isoline is omitted.
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Figure 5: Average energy of analysis increments (in m2s−2) in July 2007. (a,d) ROT+MRG modes, (b,e)
EIG modes, (c,f) WIG modes. k= 0 is not included in the summation in (a-c).
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compares the bias in the MRG mode with its average increment and energy in this mode in full fields.

5 Concluding remark

Presented application of the normal-mode function expansion shows that their usefulness in the NWP frame-
work extends beyond that of the non-linear normal-mode initialization. Normal modes can be a useful tool for
the identification of the analysis system bias and for understanding of the balance issues of relevance for data
assimilation.
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N. ŽAGAR: DIAGNOSIS OF DATA ASSIMILATION SYSTEMS BY USING NORMAL MODES. . .

APPENDIX

Normal modes of Kasahara and Puri (1981)

The derivation of normal modes starts from the primitive equations with the traditional shallowness approxi-
mations written inσ coordinates. The equations are linearized around a motionless mean state with a vertical
temperature profileTo as a function ofσ . By introducing a new mass variableP, as defined in section 2, the
thermodynamic and continuity equations can be combined into a single equation for theP variable.

Solutions to the adiabatic and inviscid linearized equations are sought by assuming separability of the vertical
and horizontal dependences of the dependent variables. Introducing the vertical dependence functionΨ(σ),
the zonal and the meridional wind (u andv respectively) and the geopotential variableP are expressed by
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Substituting (A-1) into the linearized equations leads to the two standard systems of horizontal and vertical
structure equations. The system of equations for horizontal motions foru′, v′ andh′ on the sphere are written
after dropping the prime symbols as follows:

∂u
∂ t

−2Ωµv+
g
a

(

1−µ2)−1/2 ∂h
∂λ

= 0 (A-2)

∂v
∂ t

+2Ωµu+
g
a

(

1−µ2)1/2 ∂h
∂ µ

= 0 (A-3)

∂h
∂ t

+
Heq

a

[

∂u
∂λ

+
∂

∂ µ

(

(

1−µ2)1/2
v
)

]

= 0. (A-4)

All constants here are represented by their usual symbols:t stands for time,µ = sin(θ), a is the radius of
the earth andΩ is the earth’s rotation speed. A constantHeq, which has the dimension of length, couples the
horizontal Eqs. (A-2-A-4) and the following vertical structure equation:

d
dσ

(

σg
RΓo

dΨ
dσ

)

+
1

Heq
Ψ = 0. (A-5)

The constantHeq is thus the eigenvalue of Eq. (A-5). A subscript ’eq’ stands for the ’equivalent depth’ as
this parameter is best known; this comes from the equivalency of Eq. (A-2-A-4) to linearized shallow-water
equations with the fluid depth ofHeq.

The solutions of the vertical structure equation require two boundary conditions, at the model top and bottom
half levels (σ = 0 andσ = 1 respectively):

dΨ
dσ

= finite at σ = 0, and
dΨ
dσ

+
Γo

To
Ψ = 0 at σ = 1. (A-6)

In addition to the vertical discretization in terms ofσ levels, Eq. (A-5) requires as input the vertical stability
profile Γo, defined as

Γo =
κTo

σ
−

dTo

dσ
. (A-7)

The parameterκ is defined asκ = R/Cp whereCp is the specific heat at constant pressure. The spectrum of
solutions of (A-5) is discrete and it is given in terms of vertical eigenfunctionsΠm(σ), wherem ranges between
1 andNσ , the number of vertical levels.

64 ECMWF Workshop on Diagnostics of data assimilation system performance, 15-17 June 2009
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Solutions of the system (A-2-A-4) are given in terms of Hough functions (Kasahara 1976; Kasahara 1978):

(u,v,h)T = SmHp
k,n (λ ,θ ,m)e−i ωk,n,mpt , (A-8)

whereωk,n,m is the eigenfrequency. Also,Sm represents the scaling matrix which removes dimensions from the
input data vector after the vertical projection is performed:

Sm =







(gHeq)
1/2 0 0

0 (gHeq)
1/2 0

0 0 Heq






. (A-9)

The symbolHp
k,n (λ ,θ ,m) represents the Hough harmonics, which are built as:

Hp
k,n (λ ,θ ,m) = Hp

k,n (θ ,m)e−i kλ . (A-10)

The zonal part is given in terms of harmonic waves while the meridional part, the Hough functionHp
k,n, is a

vector function of latitude for each vertical modemand motion typep:

Hp
k,n ≡





U p
k,n,m(θ)

−iV p
k,n,m(θ)

Zp
k,n,m(θ)



 (A-11)

The meridional structure functionsU p
k,n,m, V p

k,n,m andZp
k,n,m were derived byKasahara (1976) for k 6= 0 and the

casek = 0 is treated inKasahara (1978).
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Žagar, N., J. Tribbia, J. L. Anderson, and K. Raeder, 2009a: Uncertainties of estimates of inertio-gravity
energy in the atmosphere. Part I: intercomparison of four analysis datasets.Mon. Wea. Rev.137, in print.

ECMWF Workshop on Diagnostics of data assimilation system performance, 15-17 June 2009 65
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