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Abstract 

Self-sensitivity reflects the sensitivity of analysis value to observation. As shown in Liu et al. (2009), self-sensitivity 
can be calculated without approximation when observation error is not correlated in ensemble Kalman filters. With self-
sensitivity, observation and analysis value, analysis value change at the ith observation location with deletion of the ith 
observation can be calculated without carrying out data-denial experiments. This paper has extended the application of 
self-sensitivity to the forecast value change. We have derived an equation to calculate the forecast value ( )f i

iy −   without 
carrying out data-denial experiments. The impact of the ith observation on the forecast accuracy at the ith point is further 
defined based on ( )f i

iy − . 

The results with Lorenz 40-variable model show that ( )f i

iy −  calculation based on self-sensitivity, forecast perturbations 
and the other quantities is a good approximation of the actual value calculated from much more expensive data-denial 
experiments. The impact of each observation on the forecasts at those locations based on ( )f i

iy −  can detect the bad 
quality observations, and reflect the actual observation impact. In a perfect model experimental setup, the observation 
impact calculation based on ( )f i

iy −  in primitive equation global model shows larger impact of the observations over data 
sparse areas, and smaller impact of the observations over data dense regions, which is consistent with Liu et al. (2009).  

 

1. Introduction  
Self-sensitivity, a quantity that is a function of the analysis error covariance and observation error 
covariance, indicates the sensitivity of the analysis value to the variations of the observations at the same 
location. The calculation of this quantity and the related diagnostics have been discussed in both variational 
and ensemble data assimilation frameworks (Cardinali et al., 2004; Liu et al., 2009). In variational data 
assimilation scheme, since the analysis error covariance is not explicitly calculated, the self-sensitivity is 
based on approximate analysis error covariance calculated from truncated eigenvalue decomposition 
(Cardinali et al., 2004). In ensemble Kalman filters (EnKF) (Evensen, 1994; Anderson, 2001; Bishop et al., 
2001; Houtekamer and Mitchell, 2001; Whitaker and Hamill, 2002; Ott et al., 2004; Hunt et al., 2007), the 
analysis error covariance can be directly estimated from the ensemble analyses in each analysis cycle, so that 
the self-sensitivity calculation requires no approximation when there is no correlation in observation error 
covariance. Liu et al. (2009) have shown that the change in the analysis value at the ith observation location 
with the deletion of the ith observation can be computed without carrying out data-denial experiments based 
on this self-sensitivity, observation and analysis value in EnKFs. In this paper, we extend the application of 
self-sensitivity to calculate the change in the forecast value without data-denial experiments, and its 
applications on inferring the ith observation impact on the ith forecast accuracy. The observation impact we 
discuss here is different from the adjoint (e.g., Langland and Baker, 2004; Zhu and Gelaro, 2008; Cardinali, 
2009) and the ensemble sensitivity method (Liu and Kalnay, 2008; Li et al., 2009) (see section 3).  
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This paper is organized as follows: section 2 reviews the self-sensitivity calculation in EnKFs and derives the 
equation to calculate the change in the forecast value at the ith observation location with the deletion of the ith 
observation at the analysis time. Section 3 discusses the method to calculate the impact of the ith observation 
assimilated at the analysis time on the short-term forecast accuracy at the same location, as well as the 
differences between the observation impact discussed here and the observation impact from the adjoint 
method (e.g., Langland and Baker, 2004) and the ensemble sensitivity method (Liu and Kalnay, 2008, Li et 
al., 2009). In section 4, with Lorenz 40-variable model (Lorenz and Emanuel, 1998), we verify the equation 
derived in section 2, and calculate observation impact based on the method discussed in section 3. In section 
5, with a primitive equation model and perfect experiments, we further show the observation impact on the 
short-term forecast accuracy based on the method discussed in section 3. Section 6 is summary and 
discussions.  

2. Review of self-sensitivity calculation in EnKFs and derivation of yi
f  

calculation without carrying out data-denial experiments 

(−i )

As shown in Liu et al. (2009), in EnKFs, the sensitivity of the analysis vector  (  to the observation xa m ×1)

yo (p ×1)  is given by: 

 11 ( )( )
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where R  is the observation error covariance,  is the projection of the analysis vector  on the 

observation space.  is the analysis ensemble perturbation matrix in the observation space, whose ith 
column is  

ya xa

HXa
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xai  is the ith analysis ensemble member, n is the total number of ensemble analyses, and h(⋅)  is the 
observation operator, which can be linear or nonlinear. When the observation operator is linear, the right 
hand side and the left hand side of Equation (2) are equal. Otherwise, the left hand side is a linear 
approximation of the right hand side. The diagonal elements of  are called as self-sensitivity. With 
uncorrelated observation errors (the covariance 

So

R  is diagonal), self-sensitivity can be written as: 
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where  is the ith observation error variance. With self-sensitivity, given the observation  and the 

analysis value , the change in the analysis value  by leaving out the ith observation can be computed 

without actually calculating  (Cardinali et al., 2004): 

σ i
2 yi

o

yi
a yi

a

yi
a(− i )

 ( ) 1(1 ) ( )a a i o o o a
i i ii ii i iy y S S y y− −− = − −  (4) 

yi
a(− i )  is the analysis value at the ith observation location when the ith observation is not assimilated during 

data assimilation.  
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Deletion of the ith observation changes the analysis value as well as the short-term forecast value. The change 
in the short-term forecast at the ith observation location can be written as: 

 

)]−  (5) ( ) ( )
,( |0) ,( |0) |0 |0[ ( )] [ (f f i a a i

i t i t i t i ty y M M−− = −H x H x

where  is the forecast value at the ith observation location when the ith observation is not assimilated at 

the analysis time;  is a forecast valid at time t started at the analysis t=0;  is the short-term 

forecast when all the observations are assimilated at the analysis time;  is the short-term forecast 
when the ith observation is left out at the analysis time; and t is the forecast length. M is the nonlinear forecast 
model;  is a (1  matrix that projects the forecast value to the ith observation location. Since all the 

forecast states are integrated from the analysis time to time t, the subindex t

yi(t |0)
f (−i )

Hi

yi,(t |0)
f

× m)

Mt |0 (xa )
) )Mt |0 (xa(−i

| 0  is omitted from the 
following equations.  With Taylor expansion and the linearized model , Equation M (5) can be further 
rewritten as: 

  (6) ( ) ( ) ( )[ ( ) ( )] [ ( )]f f i a a i a a i
i i i iy y M M− −− = − ≅ −H x x H M x x −

]

Since both M  and  are linear, the order of these two operators can be exchanged so that: Hi
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i i i i iy y y y− −− ≅ − = −M H x x M −  (7) 

where  is the projection of the analysis value change  on the ith observation 
location. Substituting equations 

Hi (x
a − xa(−i ) ) (xa − xa(−i ) )

(3) and (4) into (7), it becomes:  
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In deriving equation (8), we exchange the order of  and  in the second step.  is the jth column of 
the forecast ensemble perturbation matrix , which is equal to: 

M H HX fj

HX f
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and  is the jth ensemble forecast member. From equation (8), we obtain the forecast value at the ith 
observation location when the ith observation is left out at the analysis time: 

x fj
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Equations (8) and (10) show that the change in the forecast value  at the ith observation location 

by leaving out the ith observation at the analysis time and  can be approximately computed from the 

ensemble forecast perturbations , the ensemble analysis perturbations , the self-sensitivity , 

the observation value  and the analysis value . The approximation of these two equations comes from 
two aspects: one is due to the nonlinearity in both the forecast model and the observation operator; the other 

yi
f − yi

f (− i )

yi
f (− i )

HX f HXa Sii
o

yi
o yi

a
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is the impact of the change in the analysis values (due to the deletion of the ith observation) other than the 
analysis at the ith observation location on the forecast at the ith point. 

3. The observation impact on the forecast accuracy  
Equation (10) shows that  can be calculated without carrying out a data denial experiment. With both 

 and  known, and a verification state  valid at time t available, we can calculate the quadratic 

forecast error change Ji  at the ith observation location due to deletion of that observation. Ji  is defined as: 

yi
f (− i )

yi
f (− i ) yi

f yi,t
v

 

2
, )  (11) 2 ( )

,( ) (f v f i v
i i i t i i tJ y y y y−= − − −

which reflects the impact of the ith observation on the forecast accuracy at the ith point. When the ith 
observation improves the forecast at the point i, Ji will be negative, otherwise, it will be positive. With Ji, the 
impact of a group of observations can be calculated by summing Ji over these observations. Ji can also be 
used in observation data thinning by deleting the observations that make the forecast worse. 

The observation impact defined in equation (11) is different from the adjoint method (e.g., Langland and 
Baker, 2004; Zhu and Gelaro, 2008; Cardinali, 2009) and the ensemble sensitivity method (Liu and Kalnay, 
2008, Li et al., 2009). The cost function (equation (11)) in this study is defined as the error difference 

between  and , which shows the forecast error change at the ith observation location if the ith 
observation is not assimilated at t = 0, as shown in the left panel of Figure 1.  

yi
f (− i ) yi

f

The cost functions defined in Langland and Baker (2004) and Liu and Kalnay (2008) are the error difference 
between the forecasts integrated from the analysis at t = 0 and t = 6, which examines the contribution of all 
the observations assimilated at t = 0 to the reduction of the forecast error at time t, as shown in the right panel 
of Figure 1.  

Furthermore, the cost function examined in this study directly reflects the impact of the observation of 
interest, while the cost functions in the other two studies have to be rewritten as function of the observations 
assimilated at t = 0. 

 

 
 
Figure 1: Left panel: schematic plot of the forecast error change at the ith observation location by leaving 
out the ith observation at the analysis time; right panel: schematic plot of the time relationship of the 
observation impact on the reduction of forecast errors at time t. (After Liu and Kalnay, 2008 Fig 1.) 
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4. Validation of yi
f (− i )  calculation without data denial experiments and 

observation impact experiments with Lorenz 40-variable model 
4.1. Lorenz 40-variable model and experimental setup 

The Lorenz 40-variable model is governed by: 

 1 2 1( )j j j j j
d x x x x x
dt + − − F= − − +  (12) 

The variables (xj, j=1, L, J) represent “meteorological” variables on a “latitude circle” with periodic 
boundary conditions. As in Lorenz and Emanuel (1998), J is chosen to be 40. F is the external forcing, which 
is 8 for the nature run, and 7.6 for the forecast, allowing for some model error in the system. Observations 
are simulated by adding Gaussian random perturbations (with a standard deviation equal to 0.2) to the nature 
run.  

The data assimilation scheme we use is the Local Ensemble Transform Kalman Filter (LETKF), which is one 
type of EnKF especially efficient for parallel computing (see Hunt et al., 2007 for a detailed description of 
this method). Since F has different values in the nature run and in the forecast run during data assimilation, 
the multiplicative covariance inflation method (Anderson and Anderson, 1999) has been applied to account 
for model error in addition to sampling errors. The covariance inflation factor is fixed to be 1.3 in this study, 
which means that the background error covariance  is multiplied by 1.3 in each data assimilation cycle.  bP

In all the experiments, we use 40 ensemble members. In verifying the calculation of ( )f i
iy −

(a i−x
( )

 based on 

equation (10), we calculate it in two ways. One is to leave out each observation in turn to get  using the 
same background forecasts after full observation data assimilation, and then calculate 

)

f i
iy −  based on 

. The forecast length is 4 times of the assimilation forecast length. The other way is 

to calculate it from equation 

( ) ( )( ( ))f i a i
iy M− = H x i

−

(10), using ensemble forecast perturbations fHX , self-sensitivity and the other 
quantities without calculating  from data denial experiments.  ( )a i−x

4.2. Results 

Figure 2 shows  (solid line with closed circles), and (( )( ( )) 1, , 40f a i
i iy M i−− =H x ) ( )f f i

i iy y −−  (solid 

line with plus signs) calculated from equation (10) at one analysis time. These two quantities collocate with 
each other over most of the points, and with very small difference over the other points. This indicates that 

 based on equation yi
f (−i ) (10) is a good approximation of  obtained from data denial 

experiments.  
H(M (xa(−i ) ))i

Since  can be calculated from equation yi
f (−i ) (10) without carrying out data denial experiments, the impact of 

the ith observation on the forecast accuracy at that point can be obtained by comparing the forecast error 

difference between  and , as defined in equation yi
f yi

f (−i ) (11). When the ith observation improves the 
forecast at that point, the forecast error gets smaller with the assimilation of the ith observation, and Ji will be 
negative. Otherwise, Ji will be positive. To show whether this method can detect the bad quality observations 
as the adjoint method (Langland and Baker, 2004) and the ensemble sensitivity method (Liu and Kalnay, 
2008, Li et al., 2009), we design an experiment that the 11th observation has 4 times larger random error 
standard deviation than the other points. The observation impact is calculated from equation (11). Figure 3 
shows the observation impact averaged over the last 500 analysis cycles of the 1000 total assimilation cycles. 
It reveals that the 11th observation makes the forecast worse, and the other points improve the forecast. This 
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indicates that this method can detect the bad quality observations. Furthermore, ( )f i
iy −  from data denial 

experiments (solid line with closed circles) and ( )f i
iy −  based on equation (10) (solid line with plus signs) 

show similar observation impact, which further verify that the calculation of  based on yi
f (−i ) (10) is a good 

approximation of the actual value.  

As any other observation impact study, different verification states may give different observation impact 
estimation. Figure 4 shows that the observation impact signal, both negative and positive, becomes stronger 
when the truth is used as verification state. The observation impact calculation method discussed here may 
be more sensitive to the verification state than the other methods (e.g., Langland and Baker, 2004; Liu and 
Kalnay, 2008; Li et al., 2009), since this observation impact formula (equation (11)) calculates the impact of 
the observation on the forecast only at that observation location, which may give a smaller signal than the 
impact on all grid points as calculated from other methods (e.g., Langland and Baker, 2004; Liu and Kalnay, 
2008; Li et al., 2009). However, since the observation impact calculation based on equation (11) requires 
little computational time, and examines different aspects of the observation impact than other methods as 
shown in section 3, it is an efficient tool to complement the estimation of observation impact from other 
methods.  

 

Figure 2: The difference between the forecast 
( )1, , 40f

iy i =

( )

 that initialized with the full 

observation analysis and  that 
initialized with the analysis that the ith observation 
is deleted at the analysis time. Solid line with plus 
signs: 

( )1, , 40y i =( )f i

i

−

f i

iy −  is calculated from equation.(10) 
without actually carrying out data denial 
experiments; solid line with closed circles: 

( )0( ) 1, , 4f i

iy i− =  is the forecast initialized with 
the analysis that each observation deleted in turn 
at the analysis time. 

  

Figure 3: Time average of the impact of each 
observation on the forecast error reduction 
(equation (11)) at the observation location. The 
observation error at the 11th point is four times 
larger than the other points. Solid line with plus 
signs: ( )f i

iy −  is calculated from equation (10) 
without actually carrying out data denial 
experiments; solid line with closed circles: 

( )0( ) , 4f i

i

− 1,y i =  is the forecast initialized 
with the analysis that each observation deleted in 
turn at the analysis time. The verification state is 
the analysis at the verification time.  
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Figure 4 The impact of the verification state on 
the calculation of the observation impact on the 
forecast error reduction. Solid line with plus 
signs is the same as in Figure 3; Solid line with 
open circles is the same as the line with plus 
signs except that the verification state is from the 
true state.  

 

 

5. The observation impact calculation in a primitive equation global model  
The tests in the Lorenz 40-variable model show that short-term forecast value change can be calculated 
without carrying out data denial experiments, and this can be used in calculating the impact of the 
observation on the forecast accuracy at that location. In this section, with Observing System Simulation 
Experiments (OSSEs) setup, we examine the impact of observations on the forecast accuracy in a primitive 
equation global model. As in Liu et al. (2009), we follow a “perfect model” OSSE setup, (e.g., Lord et al. 
1997), and use the Simplified Parameterizations primitivE Equation DYnamics (SPEEDY, Molteni, 2003) 
model, which is a global atmospheric model with 96x48 grid points in the horizontal and 7 vertical levels in 
a sigma coordinate. The observations are obtained at rawinsondes locations (closed circles in Figure 6 in Liu 
et al. 2009) with error standard deviation equal to 30% of natural variability (Figure 5 in Liu et al. 2009). At 
each assimilation cycle, we randomly pick out 30 observation locations, with every 6 of which have 4 times 
larger random error standard deviation of one type of observations (u, v, T, q, ps). We carry out one and a 
half month data assimilation cycles, and the results shown here are the average over the last one month. 

Based on equations (10) and (11), we calculate the impact of every observation on the 12-hr forecast error 
change at that observation location in each assimilation cycle. Figure 5 shows the time average of the 
observation impact on the 12-hr forecast error change summed over all the vertical levels for zonal wind 
observations (top panel) and specific humidity observations (bottom panel). It indicates that, on a time 
average, almost all the observations have positive impact on the forecast accuracy, even though we randomly 
add larger random error to a small portion of observation in each assimilation cycle. The observations along 
the coast and in data sparse area have much larger impact on the forecast accuracy change than data dense 
region, which is consistent with the findings of Liu et al. (2009) that the observations at data sparse area are 
more important. The impact of specific humidity observations (bottom panel of Figure 5) on the 12hr 
forecast shows similar features as the zonal wind observations.  
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Figure 5 Time average of the observation impact on the 12hr forecast error change as defined in 
equation (11) summed over all the vertical levels for zonal wind (top panel, unit: m2/s2) and specific 
humidity (bottom panel, unit: 1.0e-7kg2/kg2). The verification state is the analysis valid at the forecast 
time.  

6. Summary and discussion  
Self-sensitivity indicates the sensitivity of analysis to observations, which is a function of analysis error 
covariance and observation error covariance. Since EnKFs explicitly calculate analysis error covariance in 
each assimilation cycle, self-sensitivity can be calculated without approximation when the observation errors 
have no correlation, as shown in Liu et al. (2009). With self-sensitivity, observation and analysis value, the 
analysis value change at the ith observation location with the deletion of the ith observation can be obtained 
without carrying out data denial experiments. In this paper, we extend this property to the forecast values, 

deriving an equation that calculates  without carrying out data denial experiments. Based on this 
forecast value, a cost function that measures the impact of the observation on the forecast accuracy at that 
observation location is defined. The observation impact defined in this paper is different from Langland and 
Baker (2004), Liu and Kalnay (2008) and Li et al. (2009), because it measures the impact on the forecast 
when some observations are deleted during data assimilation, while Langland and Baker (2004), Liu and 
Kalnay (2008) and Li et al. (2009) examine the impact of the observations when all the observations are 
assimilated simultaneously. This method is also different from the observation impact study by Cardinali 
(2009), which utilizes analysis sensitivity in a chain rule derivation of the adjoint observation impact 
formula.  

yi
f (−i )
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With the Lorenz 40-variable model, we have shown that the forecast value change at the ith observation 
location based on equation (10) is a good approximation of the actual forecast value change obtained from 
data denial experiments. Furthermore, the observation impact based on the forecast value obtained from 
equation (10) can detect the bad quality observations, and reflect the actual impact of each observation on the 
forecast at those observation locations.  

Perfect model experiments with a global primitive equation model show that the observation impact obtained 
from equation (11) have larger impact over data sparse area and smaller impact over data dense region, as 
shown in Liu et al. (2009).  
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