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1. Introduction 
A very productive WWRP/THORPEX Workshop on “4D-VAR and Ensemble Kalman Filter 
Intercomparisons” took place in Buenos Aires, Argentina, 10-13 November 2008, preceded by a widely 
attended 2-week Intensive Course on Data Assimilation. The Workshop invited lectures, contributed papers, 
classes and exercises are posted at http://4dvarenkf.cima.fcen.uba.ar/. There is a special collection of papers 
presented at the Workshop being reviewed for publication in Monthly Weather Review (Herschel Mitchell, 
editor). The main conclusion of the Workshop was that 4D-Var and EnKF are currently competitive in skill. It 
was remarkable that neither method was found to be fatally flawed or even significantly inferior to the other 
in any area, even from a computational point of view. For EnKF, about 40-100 ensemble members were 
found to be sufficient for all the weather applications, from storm-scale to global. Another important 
conclusion, brought forward by the careful experiments carried out at Environment Canada (Buehner et al., 
2008), is that hybrid methods combining the advantages of both methods were found to be better than either 
one alone. There are several possible hybrid approaches (see Barker, 2008, invited lecture). Buehner et al. 
(2008) tested a hybrid where 4D-Var was run with the background error covariance provided by the 
operational EnKF. They found that it had about 10 hours of advantage in skill in the Southern Hemisphere 
compared with either 4D-Var or EnKF. 

In this paper we focus on EnKF, a less mature approach than 4D-Var, and discuss a number of new tools for 
EnKF, in most cases by adapting a method already developed for 4D-Var. We show that it is possible to 
compute a “no-cost” EnKF smoother for each assimilation window and an outer loop, both similar to the 
corresponding 4D-Var approaches, that make it possible to deal with nonlinear, non-Gaussian perturbations in 
long windows. An extension of the outer loop in which the smoother is applied not only to the mean but to the 
ensemble perturbations as well (dubbed “running in place”, RIP) is shown to accelerate the spin-up of the 
EnKF even in the absence of any prior information. Other new potentially useful tools are a coarse resolution 
EnKF that does not result in a worse analysis, the adaptive estimation of the background error covariance 
inflation and of observation errors, a simple estimation of model errors, and the sensitivity of analysis and 
forecast to observations without the adjoint of the model or the data assimilation system. Several of these 
tools make use of the analysis ensemble weights (transform matrix of the ETKF, Bishop et al., 2001) that 
allow expressing the analysis as a weighted average of the ensemble forecasts, so the examples are performed 
using a type of EnKF, the Local Ensemble Transform Kalman Filter (LETKF) for which those weights are 
available. 
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2. Local Ensemble Transform Kalman Filter 
In the LETKF (Hunt et al. 2007) the forecasts ensembles are computed globally: 
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followed by the construction of forecast and observation perturbation matrices: 
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 where K is the number of ensemble members. We follow the notation of 

Ide et al 1997, with the overbar being the ensemble mean. In the LETKF the analysis is performed in a local 
grid space; for each grid point the localization is determined by the observations that are used in that grid 
point analysis. The following computations are performed locally, at each grid point. First the analysis error 
covariance is computed in ensemble space, indicated by a tilde, taking advantage of the fact that in ensemble 

space : ( ) 11b K −= −P I%

( ) 11 11 ; [(a bT b aK K
−−⎡ ⎤= − + = −⎣ ⎦P I Y R Y W% %  

Here , the matrix of perturbation weights, is computed using a symmetric square root. The analysis mean 
increment in ensemble space is given by 

aW

1( )a a bT o b−= −w P Y R y y% ,  

and is added to each column of to get the ensemble analyses increment in ensemble space. aW

The new ensemble analyses in model space are then the columns of ( )a b a a
n nx b= + +X W w x . Gathering the 

grid point analysis forms the new global analyses. Note that the LETKF outputs the analysis weights aw and 

the analysis matrices of perturbation weights or transforms . These weights multiply the ensemble 
forecasts to give the analyses. 

aW

3. No-cost smoother, outer loop and running in place 
As suggested in schematic figure 1, a linear combination of model trajectories is also a model trajectory. 
Thus, if a linear combination of trajectories at tn, the end of an assimilation window is close to the truth, 
indicated by the analysis (arrow point, average of the ensemble analysis, open circles), then it should also be 
close to the truth throughout the assimilation window, at least to the extent that model errors allow (Brian 
Hunt, personal comm., 2009). Therefore the weights determined at the end of the assimilation window could 
be used at the beginning of the window to obtain a smoothed analysis (indicated by a cross in the figure). The 
smoothed analysis (Kalnay et al., 2007b) is closer to the truth than the previous analysis (arrow at tn-1) since 
they “know” about the future observations within the assimilation window. The “no-cost” smoother (applying 
the forecast weights found optimal at tn to the analyses valid at tn-1, the beginning of the assimilation window) 
has been tested on the QG model of Rotunno and Bao (1996) by Yang et al., 2009a, and on the WRF model 
(Shu-Chih Yang, personal comm., 2009) and found to consistently give a more accurate analysis than the 
corresponding filter. An obvious application of the no-cost smoother would be reanalysis, where the ability of 

2 ECMWF Workshop on Diagnostics of data assimilation system performance, 15 - 17 June 2009 



KALNAY, E. ET AL.: DATA ASSIMILATION SYSTEMS: FOCUS ON ENKF DIAGNOSTICS 

having a smoothed analysis that takes advantage of future observations as well as an ensemble that provides 
estimations of uncertainty is clear. 

 

 

Figure 1: Schematic showing the difference between 
the LETKF analysis at time tn-1, indicated by the 
arrow and given by 1 1 1x x Xa b b a

n n n n 1− − −= + w −  and 
the LETKF smoother, given by 

1 1 1
a

n n n n− − −x x Xa b b= + w , and indicated by a cross. 
The grey stars are the observations and the open 
circles the analysis ensemble. Adapted from Kalnay 
et al., 2007b. 

Computing the smoother at tn-1 using the mean weight a
nw as shown in the schematic figure and retaining the 

original background error perturbations 1
a
n−W re-centers the ensemble about a more accurate solution, 

allowing a second analysis analogous to the widely used variational outer loop. If we also use the updated 
perturbation weights , the outer loop algorithm is extended into “running in place” (RIP).  aWn

Table 1 shows the result of optimized 4D-Var and LETKF applied to the Lorenz (1963) model (Kalnay et al., 
2007a, Kalnay and Yang, 2009). 8-step windows are sufficiently short that ensemble perturbations remain 
linear, but with 25-steps windows the perturbations grow nonlinearly and become non-Gaussian. With a linear 
window the 4D-Var (with optimized background error covariance and using Pires et al (1996) approach to 
extend the optimal window), and LETKF (with 3 ensemble members and optimal inflation), give similar RMS 
analysis errors. With a nonlinear window of 25 steps, 4D-Var is clearly better than the optimal LETKF. 
However using a single iteration of either the outer loop or the running in place algorithm every analysis 
window, the LETKF becomes considerably more accurate than 4D-Var. 

The RIP algorithm can also be used to accelerate the spin-up of an ensemble (Kalnay and Yang, 2009) so that 
in real time the LETKF converges to the optimal solution even if started from an ensemble without any prior 
information.  

 

RMS analysis errors 4D-Var LETKF LETKF + 
outer loop 

LETKF +  
RIP 

Window=8 steps 0.31 0.30 0.27 0.27 
Window=25 steps 0.53 0.66 0.48 0.39 

 
Table 1: Comparison of the analysis RMS errors with optimized 4D-Var and optimized LETKF for a 
short window (8 steps) during which the ensemble perturbations remain linear, and a long window (25 
steps), during which the perturbations grow nonlinearly and become non-Gaussian. One iteration of 
either the “outer loop” (re-centering the ensemble around the smoothed mean) or the RIP algorithm 
(smoothing both the ensemble mean and the perturbations) is enough to address this problem. From Yang 
and Kalnay, 2009. 
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Figure 2: Comparison of the spin-up of an ensemble started from the same random mean, with and 
without RIP. The initial perturbations are random, with either a uniform distribution (black) or drawn 
from the 3D-Var background error covariance (grey). From Kalnay and Yang, 2009. 

Figure 2 shows an example for the Rotunno and Bao (1996) QG model where the LETKF was started from a 
randomly chosen mean and from perturbations which were either random with a uniform distribution, or from 
the tuned 3D-Var background error covariance. The application of the RIP algorithm reduces substantially the 
spin-up time for both a very poor and the best available choice of initial ensemble members.  

4. Coarse analysis with interpolated weights 
Yang et al. (2008) compared performing analysis in coarse grids and interpolating the analysis fields or the 
analysis increments to a fine grid, with the interpolation of the perturbation weight matrices and the 

analysis weights 

aW
aw .  

Figure 3 shows that the accuracy of the analysis increments is quickly lost when interpolated increments 
(similar results are obtained when interpolating full fields). For the weight interpolation, the accuracy of the 
increments and their dynamical structure is maintained even  when the analysis is performed every 7x7=49 
grid points (a coverage of only 2%). This indication that interpolation of the weights more accurate is 
confirmed by the results shown in Figure 4. In fact the coarse resolution analysis with weight interpolation is 
slightly more accurate than the full resolution analysis. This indicates that the weights represent large scales 
and should be smoothed to avoid sampling errors in the smaller scales. 
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Figure 3: Top: comparison of the analysis increments for the full grid analysis resolution, and analyses 
performed every 3x3, 5x5 and 7x7 grid points, when the LETKF weights are interpolated. Bottom: 
analysis increments when the analysis increments are interpolated from the analysis at every other grid 
point, and 3x3, 5x5 and 7x7 grid points. 

 

 
Figure 4: Analysis error for a QG model simulation, with 128 sounding observations every 12 hours. 
Black: LETKF full analysis resolution. Grey: 3D-Var full analysis resolution/ Red lines: LETKF at lower 
resolution interpolating the analysis increments. Blue lines: LETKF at lower resolution interpolating the 
weights. From Yang et al. (2009) 

5. Handling model errors 
Model errors should be accounted for in the formulation of EnKF as well as in 4D-Var. In the standard 4D-
Var formulation, minimizing the cost function with the initial conditions of the model trajectory as control 
variables imposes a strong constraint, neglecting model errors. Only recently has the possibility of accounting 
for model errors by imposing the model trajectory as a weak rather than a strong constraint has been 
considered (Tremolet, 2006). Another approach is to estimate the model bias by repeated comparisons with 
the observations (e.g., Dee and Da Silva, 1998) so that the model bias is defined in observation space. The 
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Low-Dimensional method of Danforth et al. (2008) also estimates the bias, as well as the diurnal cycle and the 
state-dependent errors, but these correction fields are defined in model space.  

In EnKF the most common approach to handling model errors has been to increase the background error 
covariance by a multiplicative factor greater than 1, or adding random numbers or fields to the covariance. 
These methods are known as multiplicative or additive inflation respectively, and of the two, additive 
inflation has been found to be slightly more effective, presumably because it forces the ensemble to explore 
wider subspaces (Whitaker et al., 2008). Another approach is the relaxation to the prior covariance of Zhang 
et al. (2004). Even for perfect model simulations, it is found necessary to use an inflation of the background 
error covariance of, typically, 1-10% to avoid filter divergence. For imperfect models, it has been empirically 
found that the required inflation is much larger than for perfect models, typically 20-100%, and that inflation 
increases with the observation density.  

 
Figure 5: Comparison of the time average analysis error for the zonal velocity u for a perfect model 
(yellow) and for observations derived from the NCEP-NCAR Reanalysis using the same inflation found 
optimal for the perfect model (control, red). For each of the following methods, parameters were 
optimized: multiplicative inflation (blue), additive inflation (black). The three methods that estimate bias 
were found to give somewhat worse results than optimal inflation, so they were optimally combined with 
additive inflation (indicated by a +). Dee and DaSilva (black dashes), simplified Dee and DaSilva (green) 
and Low-Dimensional Method (black dots). From Li et al. (2009a). 

Li et al. (2009a) made a carefully optimized comparison  of several methods to handle model errors within the 
LETKF. The experiments were performed with the SPEEDY model (Molteni 2003), first assuming a perfect 
model experiment, with the observations obtained from a “nature run” adding random errors, and then 
observations extracted from the NCEP-NCAR Reanalysis, which approximately follows the real atmosphere 
rather than the SPEEDY model climatology. Several methods were implemented with optimized parameters, 
and their results were compared. They include additive and multiplicative inflation (with the former giving 
slightly better results than the latter); the Dee and DaSilva method, a simplified Dee and DaSilva method, and 
the Low-Dimensional method (LDM) adapted from Danforth et al. (2008). The last three methods estimate 
and correct the bias, whereas the additive and multiplicative inflation are naturally better suited for random 
errors. They found that inflation was better than bias correction alone, but that the optimized combination of 
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bias correction and additive inflation was superior to either one alone (Figure 5). When using realistic 
observations, all these methods gave substantial improvements compared to the perfect model assumption 
(control run).  

6. Simultaneous estimation of inflation and observation error covariance 
Any statistical data assimilation method requires accurate estimations of the background and the observation 
error covariances. Sometimes, in the absence of good estimates these error covariances are just tuned or 
obtained from reasonable assumptions. In EnKF, the background error covariance needs to be inflated, and as 
previously mentioned, tuning the inflation can be an expensive effort. 

Li et al. (2007, 2009b) introduced a method to simultaneously estimate observation error variances and 
inflation. Miyoshi et al. (2009) has recently extended to the estimation of correlated observation errors. These 
methods are inspired by the previous work of Houtekamer et al. (2001) who proposed to testing the validity of 
the statistical assumptions using an equation which we refer to by the operation “observation minus 
background” OMB: 

T b T
o b o b− −< >=d d HP H R+    OMB*OMB 

This equation should be satisfied if the statistical assumptions are correct. However, with inflation, we have to 
multiply  the background error covariance by a number 1Δ > : 

T b T
o b o b− −< >= Δd d H P H R+

=

T

 

However, if we try to estimate inflation by assuming that the observation error covariance is accurate, when in 
fact they may be wrong by as much as a factor of 2, the results are poor. Desroziers et al. (2005) introduced 
two new statistical relationships that allow to handle uncertainties in both background and observation error 
covariances: 

T
o a o b− −< >d d R      OMA*OMB, and  

T b
a b o b− −< >=d d HP H    AMB*OMB. 

Again, these three relationships should hold during the data assimilation if the background and observation 
error covariance are correctly estimated and the assumptions about uncorrelated errors are valid. 

Like Desroziers et al. (2005), Li et al. (2007) transposed these matrix relationships and obtained three 
equations to estimate what the observation error variances and the inflation should be. These were used 
adaptively during the execution of the LETKF to estimate the optimal value of these parameters: 
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Li et al (2007) used a simple time smoothing scheme to estimate both the inflation Δ  and the observation 
error variances 2

oσ  online. In the experiments with the SPEEDY model, the observation errors for the wind 

components, temperature, moisture and surface pressure were all wrongly specified, with a value twice the 
“true” value. It is interesting that the system initially ignored the inflation value (assumed ) and 
concentrated in correcting the observation errors, and only then started estimating the time varying inflation 
(Figures 6a and b). 

1Δ =

Figure 6a (left):  evolution of the observation error variances starting with a value too high by a factor of 
2. Figure 6b (right): evolution of the inflation when the observation error variances are correctly 
specified (red values, hovering around 1.005), and those obtained when the observation error variances 
are wrongly specified (green). Note that initially the system focused in correcting the variances, while 
keeping the inflation at 1, and only after the variances are corrected, the inflation is estimated at similar 
values as with perfect observational variances. From Li et al. (2009b). 

Li et al. (2009b) obtained good results with adaptive inflation in the presence of random model errors, even 
for large errors. In the presence of model biases, the results were satisfactory for low bias errors but worked 
less well for high bias, indicating that inflation, which is best for random errors, needs to be combined with a 
method to account for model bias. Miyoshi (2009, in preparation) has tested with success the estimation of 
correlated observation errors, an especially promising approach for estimating the observation error 
covariance for satellite retrievals that may be accurate but whose correlated errors are unknown. 

7. Ensemble forecast sensitivity to observations without adjoint 
Langland and Baker (2004) developed an extremely powerful method to estimate the impact of observations 
on short-range forecasts. Liu and Kalnay (2008) derived a similar ensemble forecast sensitivity without 
adjoint. There is a slight error in the formula (Li et al., 2009c), so we re-derive the ensemble sensitivity here 
(Junjie Liu, pers. comm., 2009). 

 

The perceived error from the forecast at t=0hr, verified against the analysis at time t, is |0 |0
f a

t t t= −e x x , and 

from the forecast started at t=-6hr, | 6 | 6
f a

t t t− −= − x |0t | 6te x .  The only difference between e  and −e is the 

assimilation of observations at t=00hr performed with the standard formula: 0 0| 6 0| 6( ) ( ( ))a b bH− −− = −x x K y x  
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Figure 7: Schematic (adapted from Langland 
and Baker, 2004) showing how the difference 
between , the perceived error of the forecast 

started at t=0 verified at time t, and 
|0te

| 6t −e , the 
perceived error of the forecast started at t=-6hr, 
both verified against the analysis at time t, is due 
to the assimilation of the observations at time 
t=0.  

We measure the impact of the observations at 00hr from the difference of the square of the errors (note that 
we have used the Eulerian norm in this inner product it can be easily generalized to the energy or any other 
norm): 

 

2
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so that the formula for forecast sensitivity is 

2
0| 6 |0 | 6( ( )) (

Tb
t tH − −⎡ ⎤Δ = − +⎣ ⎦e MK y x e e  

Langland and Baker (2004) and Zhou Gelaro (2008) compute this impact using adjoint relationships, 
requiring the adjoint of the model  and of the data assimilation : TM TK

)−
2

0| 6 |0 | 6( ( )) (
Tb T T

t tH −⎡ ⎤Δ = − +⎣ ⎦e y x K M e e   Adjoint forecast sensitivity (L&B, 2004) 

 

Within EnKF we can use the original equation without the need to compute the adjoint. Recall that 

so that 1 11/ ( 1)a T a aT TK− −= = −K P H R X X H R

1 1
|0( ) / ( 1) / ( 1)a aT T f aT

tK K− −= − =MK MX X H R X Y R −

)K

.  

Thus, for EnKF we can write directly 

2 1
0| 6 0 |0 |0 | 6( ( ) ( ) / ( 1

Tb a fT
t t tH −

− −⎡ ⎤Δ = − + −⎣ ⎦e y x R Y X e e  Ensemble forecast sensitivity 

Note that this is a product using the nonlinear forecast ensemble |0
fT
tX  and the ensemble analysis perturbations 

in observation space , available within the EnKF formulation. 0 ( )a a=Y HX

These formulas suggest that the adjoint and ensemble sensitivities should be similar for short forecasts, for 
which the linear assumption of the adjoint model is valid. For longer integrations, the ensemble sensitivity 
uses nonlinear integrations so that it should be more accurate. As in Liu and Kalnay, we tested both the 
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adjoint and the ensemble sensitivities using the Lorenz (1996) 40-variable model, and performed an LETKF 
data assimilation using simulated observations. 

  

 

 

Figure 8a: Comparison of the day-to-day domain 
averaged changes in forecast error reduction due 
to observation random errors at t=00hr after a 1-
day forecast with the Lorenz 40 variable model. 
The full black circles are obtained with the 
ensemble sensitivity, the grey + signs correspond 
to the adjoint sensitivity, and the open circles are 
the actual decrease in errors due to the 
observations at analysis time. 

 

 

Figure 8b: time correlation between the predicted 
forecast error reductions and the actual forecast 
error reductions for different forecast lengths. 
Black circles: ensemble sensitivity, Grey +: adjoint 
sensitivity. 

 
Figure 9: Time average of the forecast sensitivity to each of the 40 observations. The observation at 
location 11 is drawn from a Gaussian distribution with standard deviation  double than the other 
stations, and this information is not provided to the system. Left: 1 day, center: 10-days, right; 20 days. 
Black circles: ensemble sensitivity, + signs: adjoint sensitivity. 

Figures 8a compares the adjoint and ensemble estimated impact of the observations at each analysis time with 
the actual observed impact by computing the one-day forecast and the forecast started from 6 hours earlier. It 
is clear that both methods do very well, and that the time correlation due to day-to-day variations in 
observation errors is almost 1. Figure 8b shows the time correlation for different forecast lengths, up to 20 
days, a time at which the forecast skill is essentially zero. The advantage of using nonlinear integrations 
instead of the linear adjoint model is apparent. In Figure 9 we have observations at every grid point, but at 
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grid point 11 there is a “bad sensor” with random errors that have twice the standard deviation of the other 
stations. As expected, after 1-day, the adjoint and ensemble sensitvity give essentially identical results. After 
10 days the ensemble sensitivity is still able to identify the bad observations, and that seems to hold even at 
day 20, when the forecasting system has very little skill left. 

8. The future 
EnKF has benefited from the many years of 4D-Var research and operational experience. We have shown that 
methods derived to improve 4D-Var can be adapted to EnKF. The main disadvantage of EnKF is the fact that 
the analysis increments are computed within the subspace of the ensemble, of dimension K, seemingly too 
small. However, the introduction of localization in space, needed to avoid spurious long distance correlations 
(Hotekamer et al., 2001), has the benefit of substantially increasing the effective dimension of the space 
spanned by the ensemble. This seems to be confirmed by the fact that good results have been obtained with 
ensembles of size 40-100, and not much additional advantage observaed from further increases of the 
ensemble size. Even fewer ensembles are needed for less chaotic systems than the Earth’s atmosphere (Matt 
Hoffman, personal communication, 2009). 

EnKF is particularly good at estimating evolving parameters within the analysis cycle. Adaptive localizations 
have been proposed by Bishop and Hodyss (2009) and by Anderson (2007). Recently Miyoshi (personal 
communication, 2009) has tested with good results an adaptive localization scheme that takes advantage of 
both these methods. This adaptivity and the ability to estimate observation errors is helpful for long 
reanalyses, when the observing systems (and their associated errors) keep changing. 

At this point it seems like a hybrid system combing the advantages of  both 4D-Var and EnKF is optimal, 
although there are several possible ways to construct a hybrid system (Barker, 2008, Buehner, 2008), so that 
we expect to see both 4D-Var and EnKF thriving for many more years. 
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