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Abstract 

This paper describes the use of forecast sensitivity to observations as a diagnostic tool to monitor the observation 
impact on the quality of the short range forecasts (typically 24 hour). The forecast error is provided by a control 
experiment (using all observations available) which has been run among two series of observing system experiments 
performed at ECMWF. The observation data impact obtained with the forecast sensitivity is then compared with the 
observation data impact as classically measured in the context of observing system experiments. Overall, the 
assimilated observations decrease the forecast error. However, locally some poor performances are detected that are 
related either to the data quality or biases in the model. 

 

1. Introduction 
Over the last decade, data assimilation schemes have evolved towards very sophisticated systems, such as the 
four-dimensional variational system (4D-Var) (Rabier et al. 2000) that operates at the European Centre for 
Medium-Range Weather Forecasts (ECMWF). The scheme handles a large variety of both space and 
surface-based meteorological observations. It combines the observations with prior (or background) 
information on the atmospheric state and uses a comprehensive (linearized) forecast model to ensure that the 
observations are given a dynamically realistic, as well as statistically likely response in the analysis. 
Effective performance monitoring of such a complex system, with an order of 107 degrees of freedom and 
more than 106 observations per 12-hour assimilation cycle, has become an absolute necessity.  

The assessment of each observation contribution to the analysis is among the most challenging diagnostics in 
data assimilation and numerical weather prediction. Methods have been derived to measure the observational 
influence in data assimilation schemes (Purser and Hung 1993, Cardinali et al. 2004, Fisher 2003, and 
Chapnick et al. 2004). These techniques show how the influence is assigned during the assimilation 
procedure, which partition is given to the observation and which is given to the background or pseudo-
observation. They therefore provide a indication of the robustness of the fit between model and observations 
and allow some tuning of the weights assigned in the assimilation system.  

Recently, adjoint-based observation sensitivity techniques have been used (Baker and Daley 2000, Langland 
and Baker 2004, Cardinali and Buizza, 2004, Morneau et al., 2006, Xu and Langlang, 2006, Zhu and Gelaro 
2008) to measure the observation contribution to the forecast, where the observation impact is evaluated with 
respect to a scalar function representing the short-range forecast error. In general, the adjoint methodology 
can be used to estimate the sensitivity measure with respect to any parameter of importance of the 
assimilation system. Very recently, Daescu (2008) derived a sensitivity equation of an unconstrained 
variational data assimilation system from the first order necessary condition with respect to the main input 
parameters: observation, background and their error covariance matrices. The paper provides the theoretical 
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framework for further diagnostic tool development not only to evaluate the observation impact on the 
forecast but also the impact of the other analysis parameters. Sensitivity to background covariance matrix 
can help in evaluating the correct specification of the background weight and their correlation. Limitations 
and weaknesses of the covariance matrices are well known, several assumptions and simplifications are 
made to derive them. Desroziers and Ivanov (2001) and Chapnik et al. (2006) discussed the importance of 
diagnosing and tuning the error variances in a data assimilation scheme. 

Over the past years, Observing System Experiments (OSEs) have been the traditional tool for estimating data 
impact in a forecasting system (Bouttier and Kelly, 2001 English et al., 2004 and Lord et al., 2004, Kelly and 
Thépaut, 2007). Usually, OSEs are performed by removing subsets of observation from the assimilation 
system and the forecasts are compared against a control experiment that includes all observations.  

The value of observations in the forecast is assessed by comparing forecast skill obtained by different 
statistical measures and several independent experiments need to be performed for quite long periods (a few 
months) to ensure statistical significance to the results. The assessment of the value of a given observation 
type can become quite expensive if a full investigation of the different components of the GOS (Global 
Observing System) is performed.  

Clearly, there are some basic differences between the adjoint-based observation technique and the OSE 
technique: 

The adjoint-based observation sensitivity technique measures the impact of observations when the entire 
observation dataset is present in the assimilation system, while the observing system is, in the OSE context, 
modified. In fact, each OSE experiment differs from the others in terms of assimilated observations. 

The adjoint-based observation sensitivity technique measures the response of a single forecast metric to all 
perturbations of the observing system, while the OSE measures the effect of a single perturbation on all 
forecast metrics.  

The adjoint-based technique is restricted by the tangent linear assumption, valid up to 3 days. Furthermore, a 
simplified adjoint model is usually used to carry the forecast error information backwards, which limits 
further the validity of the linear assumption, and therefore restricts the use of the diagnostic to a typical 
forecast range of 24-48 hours. One implication to use a simplified adjoint model is that the analysis 
uncertainties obtained throughout the adjoint integration can be incorrect if the propagating back signal is 
weak (Isakseen et al., 2005). The OSE on the other hand can measure data impact on long-range forecast.  

The adjoint-based observation sensitivity technique measures the impact of all observations assimilated at a 
single analysis time while the OSE includes effect of observations assimilated at previous time since they 
compare modified Kalman gain matrices.  

The aim of this paper is twofold: illustrate the type of investigation and diagnostics that can be carried out 
with the adjoint-based observation sensitivity in an operational context, and provide the overall observation 
performance in the system. To this respect the adjoint tool is based on the forecast error of the control 
experiment of those OSEs that have recently been performed at ECMWF (Kelly and Thépaut 2007) and on 
the forecast error of the last implemented operational model 

In this paper, the potential of estimating forecast sensitivity to observations as a diagnostic tool to investigate 
the sources of short-range forecast errors is shown and qualitatively contrasted with an Observing System 
Experiment In section 2, the theoretical background of the forecast sensitivity (observation and background), 
the numerical solution and the calculation of the forecast error contribution from observations are shown. 
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Also, the OSEs used in the investigation are summarized. Results are illustrated in section 3. Conclusions are 
given in section 4.  

2. Observation Impact on the Forecast 

2.1. Linear analysis equation 

Data assimilation systems for numerical weather prediction (NWP) provide estimates of the atmospheric 
state x by combining meteorological observations y with prior (or background) information xb. A simple 
Bayesian normal model provides the solution as the posterior expectation for x, given y and xb. The same 
solution can be achieved from a classical frequentist approach, based on a statistical linear analysis scheme 
providing the Best Linear Unbiased Estimate (Talagrand 1997) of x, given y and xb. The optimal general 
least square solution to the analysis problem (see Lorenc 1986) can be written 

 

b a nx = Ky + (I - KH)x  2.1 

The vector xa is called the ‘analysis’. The gain matrix K (of dimension n× p with n being the state vector and 
p the observation vector dimensions) takes into account the respective accuracies of the background vector xb 

and the observation vector y as defined by the (n× n)-dimensioned covariance matrix B and the (p×p)-
dimensioned covariance matrix R, with 

 1 1 1T 1T− − − −K = (B + H R H) H R  2.2 

Here, H is a (p× n)-dimensioned matrix interpolating the background fields to the observation locations, and 
transforming the model variables to observed quantities (e.g. radiative transfer calculations transforming the 
model’s temperature, humidity and ozone into brightness temperatures as observed by several satellite 
instruments). In the 4D-Var context, H also includes the propagation in time of the atmospheric state vector 
to the observation times using a forecast model. From (2.1) the sensitivity of the analysis system with respect 
to the observations and the background can be derived from: 
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T Ta

b
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∂
∂
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x = I H K
x

 2.3 

The analysis sensitivity with respect to the observation is a similar measure as the observation influence 
derived by Cardinali et al. (2004). The only difference to the ‘Influence matrix’ is the space in which the 
solution is found. Here, the analysis sensitivity is found in the model space instead of the observation space. 

2.2. Sensitivity gradient 

Let consider two forecasts of length f starting from xa and length g starting from xb, xb being the background 

field used in the xa analysis. Both forecasts verify at time t. Following Langland and Baker (2004) and Errico 
(2007) the third order sensitivity gradient is defined as  

 f g

a a

J JJ

bx x
∂ ∂∂

= +
∂ ∂ ∂x

 2.4 
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Where ( ), ( )f f t f tJ = − −x x C x x 2  and ( ), ( )g g t g tJ = − −x x C x x 2 are a quadratic measure of the 

two forecast errors (xt the verifying analysis, taken here as the truth), and C is a matrix of dry energy norm 
weighting coefficients. It is clear that from (2.4) the adjoint model maps the sensitivity (with respect to the 
forecast) of Jf into f aJ∂ ∂x along the trajectory f and the sensitivity of Jg into g aJ∂ ∂x along the trajectory 

g (see Rabier et al. 1996, Gelaro et al., 1998 for the first order sensitivity gradient definition and 
computation). 

2.3. Sensitivity equation 

Baker and Daley (2000) derived the forecast sensitivity equation with respect to the observations in the 
context of variational data assimilation. Let us consider a scalar J-function of the forecast error. Then, the 
sensitivity of J with respect to the observations can be written using a simple derivative chain as: 

 a

a

J J ∂∂ ∂
=

∂ ∂ ∂
x

y x y
 2.5 

where aJ∂ ∂x is the sensitivity of the forecast error to the initial condition described in (b) . By using (2.2) 

and (2.3) the forecast sensitivity to the observations becomes: 

 1 1 1 1( )T T
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J J − − − −∂ ∂
= = +

∂ ∂ ∂
K R H B H R H

y x
J∂
x

1)−

 2.6 

where  is the analysis error covariance matrix A. 1 1( T− −+B H R H

2.4. Numerical solution 

In an optimal variational analysis scheme, the analysis error covariance matrix A is approximately the 
inverse of the matrix of second derivatives (the Hessian) of the analysis cost function Ja (Rabier et al. 2000), 
i.e. A=(Ja″)-1 (Rabier and Courtier 1992). Given the large dimension of the matrices involved, Ja″ and its 
inverse cannot be computed explicitly.  The minimization is performed in terms of a transformed variableχ, 
χ=L-1(x-xb), with L chosen such that . The transformation L thus reduces the covariance of the prior 
to the identity matrix. In variational data assimilation, L is referred to as the change-of-variable operator 
(Courtier et al. 1998). Let apply the change-of-variable in the analysis cost function and write: 

TB = LL
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The Hessian becomes: 

  2.8 1''( ) T T
aJ −= +χ I L H R HL

By applying the change-of-variable in (2.7) and by using (2.8), the forecast sensitivity to the observations is 
expressed as: 

 1 1 1( )T T T

a

J J− − −∂ ∂
=

∂ ∂
R HL I + L H R HL L

y x
  2.9 
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Using the conjugate gradient algorithm, first the following equation for -1∂ ∂ =J y R Hz  is solved: 
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 2.10 

The solution z lies in the Krylov-subspace generated by the vector LTza and the matrix (I+LTHTR-1HL). The 
Krylov-subspace dimension is the degree of the minimal polynomial of (I+LTHTR-1HL).   Therefore if the 
degree is low, the Krylov-method searches the solution on a small dimensioned space. The method is very 
efficient in an iterative solution of a linear system with large and sparse matrices (Van der Vorst 2003). 

The forecast sensitivity to observations is then given by interpolating z (using the H operator) in the 
observation space and by normalizing with respect to the observation error covariance matrix R. 

2.5. First order sensitivity gradient 

Let now compare the first order sensitivity gradient with the third order one.  On this subject, let 

1 ( ) ,J =e e Ce  express the variation in the forecast error due to the assimilation of observations, that is 

 where the ea and eb are the analysis and the background error. Following Langland and 

Baker, the second (or third) order Taylor series decomposition (see also Errico 2007) is used to map such 
variation  

( ) ( )aJ J−e eb

 
1( ) ( ) ( ) ( ) (
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T T
b a b a e b a e bJ J J J′ ′′− = − + − −e e e e e e e e )a

a

ae

 (2.11) 

Because the error cost function is quadratic, (2.11) reduces to 

   (2.12) ( ) ( ) 2( ) ( ) ( )T T
b a b a a b a bJ J− = − + − −e e e e e e e e e

that at the first order is  

  (2.13) ( ) ( ) 2 T T
b aJ J− = −e e d K

In an optimal assimilation system, the right hand side of the equation is on average zero (Talagrand, 2002) 
since statistically, the innovation vector, d=y-Hxb, and the analysis error are orthogonal. The results obtained 
by using the first order sensitivity gradient, only provides the measure of the sub-optimality of the analysis 
system. Therefore, the second order term appears necessary to be included in the FSO calculation.  

All the experiments performed are using a third order sensitivity gradient as described in 2.2. 

2.6. Observation impact measure 

Once the forecast sensitivity is computed, the variation δJ of the forecast error expressed by J can be found 
by rearranging (2.1) and by using the adjoint property for the linear operator: 

 
, , ( ) , ,T T

a b b
a a a a

J J J J JJ ,δ δ δ∂ ∂ ∂ ∂ ∂
= = − = − = =
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x K δy Hx K y Hx K y y

x x x x y 2.11 
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bwhere a aδ = −x x x  are the analysis increments and bδ =y y - Hx  is the innovation vector. This is the 

first time that δJ has been computed for a 12 hour 4D-Var system; the sensitivity gradient aJ∂ ∂x is valid at 

the starting time of the 4D-Var window (typically 09 and 21 UTC for the 12h 4D-Var set-up used at 
ECMWF). As for K, its adjoint KT incorporates the temporal dimension, and the δy innovations are 
distributed over the 12-hour window. The variation of the forecast error due to a specific measurement can 
be summed up over time and space in different subsets to compute the average contribution of different 
component of the observing system to the forecast error. For example, the contribution of all AMSU-A 
satellite instruments, s, and channels, i, over time T will be:  

 s
AMSU A it

s S i channel
t T

J Jδ δ−
∈ ∈

∈

=∑ ∑  

The forecast error contribution can be gathered over different subsets that can represent a specific 
observation type, a specific vertical or horizontal domain, or a particular meteorological variable. 

2.7. Observation system experiment 

A traditional way of estimating data impact in a forecasting system is to perform OSEs such as those 
illustrated by Bouttier and Kelly (2001) or Kelly and Thépaut (2007) (for other weather centres see also 
English et al. 2004 and Lord et al. 2004). OSEs can be performed in two ways: in one way, the performance 
of a baseline (reference) experiment which uses a minimum amount of observation types is compared with 
experiments that add at least one more observation type (Kelly and Thépaut, 2007). The other way consists 
in removing one particular or various datasets from the full system over a long assimilation period and to 
then compare the performance with respect to the control experiment, which assimilates the fully available 
observations from the GOS. In either case, it has to be reminded that removing observations from the 
assimilation system will generate a different Kalman gain matrix. 

The assessment of the observation value with respect the forecast skill through OSEs is performed by e.g. 
comparing the root mean square forecast error, anomaly correlation, etc. obtained with and without the 
subset of interest. This usually involves several independent experiments over a few months. Therefore, 
OSEs can be quite costly if a comprehensive investigation of the various contributions of the elements of the 
GOS needs to be performed. In Table 1 and Table 2, the observations assimilated in the control experiment 
and the list of the OSEs used in the investigation, are summarized. Forecasts have been computed for each 
OSEs from the 00 UTC analyses only, in order to save computing time. 
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Table 1: Operational data set in the OSE control experiment for summer 2006 and winter 2007 (Kelly 
and Thépaut, 2007). T, H, RH, p, u and v stand for temperature, humidity, relative humidity, pressure and 
u and v wind components.  
Type of Data Description 
OZONE Satellite ozone retrieval 
GOES Geostationary satellite infrared sounder radiances 
METEOSAT Geostationary satellite infrared sounder radiances 
AMSU-B Satellite microwave sounder radiances related to H 
SSMI-TCWV Satellite microwave imager radiances related to clouds and precipitation 
SSMI Satellite microwave imager radiances related to H and surface wind speed 
AIRS Satellite infrared sounder radiances related to H and T 
AMSU-A Satellite microwave sounder radiances related to T 
HIRS Satellite infrared radiances 
ERS-QuikSCAT Satellite microwave scatterometer 
AMVs Atmospheric Motion Vectors derived from satellite cloud imagery  
GPS-RO Satellite GPS radio occultation 
PILOT Sondes and American, European and Japanese Wind profiler  (u,v) 
TEMP Radiosondes from land and ship measuring ps, T, RH , u and v 
AIREP Aircraft measurements of T, u and v 
DRIBU Drifting buoy measuring ps, T, RH, u and v 
SYNOP Surface Observations from land and ship stations: measuring ps, RH , u and v 

 

Table 2: List of OSEs. 
Name Observations assimilated 
Reference   Conventional, AMSU-A from NOAA-16. 
AMV Reference + AMVs 

 

3. Results 
The forecast sensitivity to the observation (FSO) has been computed for two seasons, a winter and a summer 
period, based on the forecast error calculated for the control experiment of the OSEs performed by Kelly and 
Thépaut (2007). The FSO calculation [(2.9) and (2.10)] has been carried out on 60 model levels and with a 
horizontal truncation of T159 to match with the OSE final inner loop resolution and also based on both 00 
and 12 UTC forecast error (only the 00 impact is shown). As for the OSE, the observation departures were 
computed at T511 (model trajectory resolution, Rabier et al. 2000). All the experiments were performed 
using the third order sensitivity gradient defined in section 2(b). Sensitivity gradients were computed at T159 
analysis resolution. 

The sensitivity to the humidity initial condition is obtained as a secondary effect due to the adjoint of the 
linearized moist physical processes used in the sensitivity gradient calculation (Lopez and Moreau 2005, 
Tompkins and Janisková 2004, Janisková et al. 2002) which accounts for the dependency of the forecast 
error at the verification time due to the humidity errors in the initial conditions. The energy norm diagnostic 
function was computed from the OSE control (using all available observations) experiment forecast error. 
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In the results presented here, the potential of the FSO diagnostic tool on the contribution of the observing 
system to the short-range forecast error is investigated and contrasted with that from the OSE tool. Due to the 
fact that the OSEs medium-range forecast is computed only from the 00 UTC analyses, the FSO diagnostic, 
when compared to the OSE diagnostic, is also shown for the 00 UTC analysis cycles. 

3.1. Contribution of the observations to forecast error 

3.1.1. Summer 

The impact of the operational data set on the 24 hour forecast error has been investigated from the 15 June to 
15 July 2006 at 00 and 12 UTC (summer 2006). The forecast error for which the FSO is based is computed 
from the control experiment of the OSEs (see Table 1 and Table 2). The global observation performance 
over this month, as described in 2.11, is summarized in Fig.1. Negative (positive) values correspond to a 
decrease (increase) of forecast error due to a specific observation type.  

The largest error decrease is due to AMSU-A (four satellites) and AIRS radiances followed by SYNOP 
(mainly surface pressure), AIREP and DRIBU (mainly surface pressure) conventional observations. Good 
error reduction is also observed from SCAT (Quikscat and ERS scatterometer) and AMSU-B radiance 
observations. An increase of forecast error is caused by AMVs (Atmospheric Motion Vector) from 
geostationary satellites. Some degradation is also observed from PILOT observations. 

A more detailed diagnostic of the forecast error contribution from AMVs is shown in Fig.2. The contribution 
to the forecast error of the observed u-wind component is grouped by pressure levels, satellite types, such as 
GOES (G, two geostationary satellites GOES-8 and 9), METEOSAT (M, two geostationary satellites 
METEOSAT-7 and 8) and MODIS polar instruments (MO, MODIS Terra and Aqua), and by frequency 
bands: infrared (IR), visible (V) and water vapour (WV). The largest degradation is due to the visible and 
infrared frequency band at levels below 700 hPa, (mainly at 850 hPa) from METEOSAT (to a larger extent) 
and from the GOES satellites. 

 
Figure 1: 24-hour forecast error contribution in J/kg of the components (types) of the observing system in 
summer 2006. Negative (positive) values correspond to a decrease (increase) in the energy norm of 
forecast error. 
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Figure 2: Forecast error contribution of the observed u-component of the wind on pressure levels and 
grouped by satellite types: GOES (G, two satellites GOES-8 and 9), METEOSAT (M, two satellite 
METEOSAT-7 and 8) and MODIS (MO, two satellites: Terra and Aqua) and by frequency bands: 
infrared (IR), visible (V) and water vapour (WV). Negative (positive) values correspond to a decrease 
(increase) of forecast error 

The geographical locations of the degradation are shown in Fig 3 which displays the 00 UTC forecast error 
contribution of the visible and infrared bands between 1000 and 700 hPa accumulated over the summer 
month. The largest degradation is found over the southern equatorial band, in particular over the Atlantic 
(area-1) and Indian ocean (area-2) where the METEOSAT satellites are located, followed by the one over the 
West Pacific (area-3) where GOES operates.  

 
Figure 3: 00 UTC forecast error contribution (J/kg) of the observed u-component of the wind between 
700 and 1000 hPa from GOES and METEOSAT visible wavelength bands accumulated over one month in 
summer 2006. Negative (positive) values correspond to a decrease (increase) of forecast error. 
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Figure 4: rms forecast error differences between AMV and Reference OSEs of the 24 hour forecast 
starting at 00UTC for the u-component of the wind at 850 hpa (m/s). Positive (negative) contours indicate 
AMV errors are larger (smaller) than Reference errors. 

The impact of AMVs on the forecast has also been assessed through the OSE. Among the different OSEs 
performed at ECMWF, one in particular was performed to measure the impact of assimilated AMVs by 
comparing the reference experiment (all conventional observations plus AMSU-A radiances from NOAA-
16) with an experiment containing AMV observations in addition to the observations used in reference (see 
Table 2). Figure 4 shows the rms (root mean square) forecast error differences between Reference and AMV 
experiments for the 24-hour forecast starting at 00 UTC for the 850 hPa u-wind component. Similar 
degradation appears in area-1, area-2 and area-3 defined above  The largest degradation in the South Pacific 
(Fig. 4) is supported to a lesser extent by FSO diagnostic (Fig. 3). 

In the Indian Ocean, a well established Indian Monsoon circulation was taking place, characterized by a 
strong low level wind from South-East towards the Indian continent (fig. 5). Such situation is not well 
represented by the model that tends to reinforce too much the low level circulation. The degradation due to 
the AMV in the area-2 is therefore likely attributed to a model bias. On the contrary, over the South of the 
Atlantic ocean (area-1) due to the presence of semi-permanent anti-cyclone circulation in the tropical band, 
the associated large scale subsidence (Fig.6) reinforces the trade inversion with a subsequent suppression of 
deep clouds (around 30 degrees), leaving only the shallow ones. Figure 6 shows a cross section (35W, 0E) of 
the average vertical velocity for the same period, indicating the large cell of subsidence at 30S. This synoptic 
situation has implication with the methodology applied by the data provider to measure the height of the top 
of the clouds, resulting in a degradation of the data quality. A modified analysis experiment by reassigning 
the height of the top of the clouds according to the model first guess instead of using the height assigned by 
the data provider (courtesy of Niels Bormann) was performed to address the point. Unfortunately, the FSO 
based on the new forecast error does not indicate a significant improvement. The causes of the degradations 
are still under investigation. Similar synoptic situation to area-2 is also noticed in area-3, it is therefore 
believed that, even for this case, the degradation is attributed to the data quality. 
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Figure 5: 850 hPa mean wind field over the Summer period. Shading contours indicate the wind speed.  

40ON 30ON 20ON 10 ON 0O 10OS 20OS 30OS 4 OS

g ( )

0

1000

900

800

700

600

500

400

300

200

100

-8

-6

-6

-6

-6

-6

-4

-4

-4

-4

-4

-4
-2

- 2

-2

-2

-2-2

 

0

0

0
0

0

0

0

0

0

0

0
0

0

0
0

0

0

2

2

2

2
2

2

2

2

2

2

2

2
22

2
2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4

6

 
Figure 6: Mean vertical velocity over the Summer period. The strong sinking motion in Southern 
Hemisphere near 30S represents the limit of the Hadley circulation characterized by the subtropical high 
pressure cell. 

Figure 1 shows also a forecast error increase due to PILOT observations (Table 1). The geographical display 
of the forecast error for PILOT observations (not shown) indicates that the degradation was coming from the 
American wind profilers. Problems with the American wind profilers at low levels (below 700 hPa) were 
known in spring time due to bird migration contamination (Wilczak et al. 1995). But other meteorological 
situations also produce a contamination of profiler measurements (Ackley et al. 1998), one of which is the 
limitation of the local horizontal atmospheric uniformity assumption that must be satisfied to have a correct 
mean wind measure. Meteorological conditions in which short spatial and temporal scales of variability have 
amplitudes as large as the mean, as for example in the presence of a CBL (Convective Boundary Layer) and 
severe storms, limit the horizontal wind measurement. It was effectively found that the CBL-activity was 
rather high for this period as can be see from the large height of the boundary layer at the station locations, 
averaged among all profiler stations (Fig. 7).  
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Figure 7: Time series of averaged boundary layer top height from 21-hour forecasts valid at 15:00 local 
time of all American wind profile stations over the summer period. 

It was also found that both CAPE and TCWV compared with the ERA climatology (Uppala et al. 2005) 
indicated larger CAPE and humidity advection from the Golf of Mexico in areas where wind profilers are 
located (not shown). Together, high TCWV and CAPE, triggered the convection activity. The lessons learnt 
with wind profilers is that their impact on the forecast can change quite a lot given the meteorological 
situations, therefore monitoring their impact on forecast skill, on a daily basis, would allow a more efficient 
screening of the contaminated measurements.  

3.1.2. Winter 

The winter period examined in this paper ranges from the 5 of January to the 12 of February 2007. On the 
24-hour forecast error the global observation performance (Fig.8) is very similar to the summer performance 
(Fig. 1).  Some forecast skill deteriorations are again produced by METEOSAT and GOES AMVs obtained 
from the visible and infrared band 
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Figure 8: 24-hour forecast error contribution in J/kg of the components (types) of the observing system in 
winter 2007. Negative (positive) values correspond to a decrease (increase) in the energy norm of 
forecast error.  
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Figure 9: 00 UTC forecast error contribution (J/kg) of the observed u-component of the wind between 
700 and 1000 hPa from GOES and METEOSAT visible wavelength bands accumulated over one month in 
winter 2007. Negative (positive) values correspond to a decrease (increase) of forecast error. 

A large degradation is observed in central eastern Pacific ocean where a large convective activity is taking 
place due to El Nino condition (not shown). The largest negative impact of AMVs to the Fc error is found 
(Fig. 9) between 5N and 15N and coincides with a broad downward mean motion of the Hadley circulation 
(large departures were found below 700-hPa in the same region, not shown). The second cluster of negative 
impact near 25N-140W is localized on top of a region of weak winds with strong sinking motion in a high 
pressure system. Both synoptic situations are critical for the measuring the height of the top of the clouds, 
consequently the degradation is associated with the quality of the data. 

In general, the impact on the forecast of the observations can be negative for different reasons that can be 
related to the data quality or other weaknesses of the assimilation system.  It has been found that biases in the 
model can deteriorate the assimilation of good sources of information.  

4. Conclusions 
Over the last few years, the potential of using derived adjoint-based diagnostic tools has been increasingly 
exploited. This paper illustrates the use of the forecast sensitivity with respect to time-distributed 
observational data, first time in a 12-hour 4D-Var assimilation system, as a diagnostic tool to monitor the 
observation performance in the short-range forecast.  

Here, the forecast sensitivity to the observation has been based on the forecast error of the control 
experiment from observing system experiments that have been performed at ECMWF, with the intention of 
comparing the performance of the two diagnostic tools. The assessment of the value of observations for 
forecast error reduction trough the OSEs is performed by comparing the forecast skill obtained with and 
without the subset of data of interest. This usually involves large numbers of independent experiments over 
several months and is therefore quite expensive to perform and prohibitive if a detailed investigation of 
operational observing systems must be obtained. Also, any variation in the observation set that is assimilated 
through data addition or data denial modifies the Kalman gain matrix, producing therefore different solutions 
in the minimization. However, observation forecast impact on the medium and long-range can also be 
investigated. On the short-range forecast, FSO and OSE provide a very similar qualitative picture of forecast 
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improvement or degradation. In conclusion, OSEs are more indicated for evaluating the longer term forecast 
impact of data whilst FSO should be used to investigate the reasons of short-range forecast failure. 

Forecast sensitivity to observations can only be used to diagnose the impact on the short-range forecast, 
namely 24 to 48 hours, given the use of a simplified adjoint of the data assimilation system and the implied 
linearity assumption. FSO allows the identification of potential problems and directs further investigations 
through the further granularity on observation type, level and channel at no extra cost. 

Over the two months period, the global impact of observations was found to be positive and the forecast 
errors decrease for almost all data type. Problems have been noticed with Atmospheric Motion Vectors 
mainly derived from visible and infrared wavelength bands (and for low-level winds). Some of the problems 
were associated with the data quality and others to the model bias. Also, in summer, the wind profiler 
measurements were corrupted by the presence of strong convection activity in the boundary layer. Given the 
dependency of some observation types on the meteorological situation, it is suggested to run the forecast 
sensitivity to the observation diagnostic tool on an operational basis and in relation to the operational suite 
error. A constant monitoring of the performance of the model forecast would allow the use of the observation 
network in an adaptive way where situation with negative observation impact can be investigated and 
improved or potentially denied in real time. 
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