ECMWF Land Surface Analysis

P. de Rosnay

Thanks to: M. Drusch, K. Scipal, D. Vasiljevic G. Balsamo, J. Muñoz Sabater

ESF Fire workshop, 15 September 2009

Introduction on surface analysis

- Current status
 - Surface analysis structure in IFS cycle 35R3
 - Operational Soil moisture analysis (OI)
- Current developments
 - EKF surface analysis
 - Use of active and passive microwave data for soil moisture analysis

The ECMWF Integrated Forecasting System (IFS)

data assimilation system

Data Assimilation System objective: Provide best possible accuracy of initial conditions to the forecast model

Analysis: - 4D-VAR for atmosphere - Surface analysis

- The observations are used to correct errors in the short forecast from the previous analysis time.
- Every 12 hours we assimilate 7 9,000,000 observations to correct the 80,000,000 variables that define the model's virtual atmosphere.
- This is done by a careful 4-dimensional interpolation in space and time of the available observations; this operation takes as much computer power as the 10day forecast.

Surface analysis ?

Ocean surface analysis:

- Sea Surface Temperature: SST (2D interpolation, based on OSTIA)
- Sea Ice concentration: CI (2D interpolation, based on OSTIA)
- Sea surface salinity (global constant) ; for seasonal forecast, analysed from Argofloat (Optimum Interpolation)

Land surface analysis:

- Snow Water Equivalent (Cressman analysis, SYNOP Snow depth corrected according to NOAA/NESDIS snow extend information)
- 2m air Relative humidity and air Temperature (SYNOP, Optimum Interpolation)
- Soil moisture and soil temperature (SYNOP Optimum Interpolation ; Extended Kalman Filter under implementation)

Current developments at ECMWF focus on soil moisture analysis improvements

- Introduction on Surface analysis
- Current status
 - Surface analysis structure in IFS cycle 35R3
 - Operational Soil moisture analysis (OI)
- Current developments
 - EKF surface analysis
 - Use of active and passive microwave data for soil moisture analysis

Surface analysis structure in Integrated Forecasting System IFS cycle 35R3

IFS cycle 35R3 is the current operational cycle (since 8 Sept. 2009) SMS: Supervisor Monitor Scheduler

Different tasks performed for the analysis.

- Introduction on Surface analysis
- Current status
 - Surface analysis structure in IFS cycle 35R3
 - Operational Soil moisture analysis (OI)
- Current developments
 - EKF surface analysis
 - Use of active and passive microwave data for soil moisture analysis

Operational soil moisture analysis

Soil moisture analysis: Optimum interpolation (OI)

Relies on the link between soil variables and the lowest atmospheric level:

- Too dry soil \rightarrow 2m air too dry & too warm
- Too wet soil \rightarrow 2m air too moist & too cold

 \rightarrow Soil Moisture increments based on the analysis increments for the T2m and RH2m[·]

$$\Delta \Theta_{i} = a_{i} \left(T^{a} - T^{b} \right) + b_{i} \left(r H^{a} - r H^{b} \right)$$

And for the first soil temperature layer:

 $\Delta T = c \times (T^{a} - T^{b})$

Superscripts a and b denote analysis and background respectively, i denotes the soil layer.

Coefficients ai and bi are defined as the product of optimum coefficients αi and βi minimizing the variance of analysis error and of empirical functions F1, F2, F3.

References HTESSEL: Viterbo et al., 1995 Van den Hurk et al., 2000 Balsamo et al., 2009

ESF Fire workshop, 15 September 2009

References OI: Douville et al., 2000 **Mahfouf**, 1991

OI is used operationally at ECMWF for the soil moisture analysis ECMW

8

Schematics of the land surface snow on interception ground&low high reser**voi**r vegetation vegetation low bare snow under vegetation around high vegetation ${\bf x}^{r_a}$

HTESSEL Land Surface Model a)

Illustration of the OI results

Numerical experiment for June-July 2002

Optimum interpolation for soil moisture analysis:

→ Efficiently improves the turbulent surface fluxes and the weather forecast on large domains.

 \rightarrow But root zone soil moisture is the variable in which errors accumulate.

Optimum Interpolation limitations

• Link between screen parameters (T2m rH2m) and soil parameters relying on very complex and non-linear land-surface-atmosphere processes

• Ad hoc thresholds to switch off the OI in particular conditions: wind, freezing, snow, precipitation,

• Difficult to interface with new features of the Land Surface Model (HTESSEL)

• Difficult to include new types of observations directly linked to soil moisture or vegetation:

- SM form active microwave (C-band ERS, ASCAT on MetOp, SMAP)
- SM from passive microwave (L-band SMOS, SMAP, C-band AMSR-E)
- Leaf Area Index (MODIS, SPOT-VEGETATION)
- Snow Water Equivalent products (H-SAF)

- Introduction on Surface analysis
- Current status
 - Surface analysis structure in IFS cycle 35R3
 - Operational Soil moisture analysis (OI)
- Current developments
 - EKF surface analysis
 - Use of active and passive microwave data for soil moisture analysis

Extended Kalman Filter surface analysis

Current operational surface analysis system (Optimum Interpolation) relies on screen level parameters data assimilation. It is not suitable to use satellite data.

 \rightarrow An EKF soil moisture analysis has been developed.

The analysis is obtained by an optimal combination of the observations and the background (short-range forecast):

$$\mathbf{x_a}(t) = \mathbf{x_b}(t) + \mathbf{K} \left(\mathbf{y}(t) - \mathbf{H} \mathbf{x_b}(t) \right)$$

where K is the gain matrix:

$$\mathbf{K} = (\mathbf{B}^{-1}(t) + \mathbf{H}^{T}(t)\mathbf{R}^{-1}\mathbf{H}(t))^{-1}\mathbf{H}^{T}(t)\mathbf{R}^{-1}$$

The observation operator H is the Jacobian matrix of:

$$H_{ij} = \frac{\delta y_i}{\delta x_j} \simeq \frac{y_i \left(x + \delta x_j\right) - y_i \left(x\right)}{\delta x_j}$$

In finite differences, the elements of the Jacobian matrix are estimated by perturbing individually each component x_j of the control vector **x** by a small amount δx_j . sensitivity as been conducted to find the optimum perturbation δx_j .

Sensitivity of the Jacobian matrix elements to soil moisture perturbation has been conducted to determine the soil moisture perturbation (Drusch et al., GRL 2009)

Comparison between the OI and the EKF soil moisture analysis

- OI soil moisture analysis based on screen level parameters.
- EKF opens the possibility to use and to combine a large range of data types, including SYNOP data (as in the OI) and satellite measurements.
- Validation of the EKF approach before it is used to assimilate satellite data.

Experimental setup

- Experiments using the Integrated Forecasting System (IFS)
- IFS cycle 33R1, T159 (~125km) for May 2007, 6h assimilation window
- Observations T2m and Rh2m
- Observation errors: σ_{T2m} =2K; σ_{RH2m} =10% ; σ_{B} =0.01m³m⁻³
- Matrix B not cycled
- Two experiments:
 - OI experiment (SM and ST)
 - EKF experiment (SM)

Comparison between OI and EKF 1- OI Gain matrix coefficients 01 May 2007 12UTC

Comparison between OI and EKF 2- EKF Gain matrix coefficients 01 May 2007 12UTC

EKF surface analysis system

- Accounts for the complex and non-linear link between screen parameters (T2m RH2m).
- Provide similar results than the OI when screen level parameters are used.
- Tested and validated in research mode.

• Flexible to include new types of observations that are more directly linked to soil moisture:

- SM form active microwave (C-band ERS and ASCAT on MetOp)
- SM from passive microwave (L-band SMOS, C-band AMSR-E)
- Long term perspective: possibilities to extend the EKF for snow mass and vegetation characteristics analysis.

- Introduction on surface analysis
- Current status
 - Surface analysis structure in IFS cycle 35R3
 - Operational Soil moisture analysis (OI)
- Current developments
 - EKF surface analysis
 - Use of active and passive microwave data for soil moisture analysis

Soil Moisture from Active microwave remote sensing

ERS-1/2 scatterometer data and MetOp ASCAT

- Active microwave instruments operating at C-band (5.6GHz)
- ERS-1: August 1991 May 1996
- ERS-2: March 1996 January 2001 and May 2004 now
- MetOp ASCAT (EUMETSAT): Since Nov 2006

TUWien retrieval scheme Wagner et al., 1999) \rightarrow Ws: surface soil moisture index between 0 and 100

H-SAF project \rightarrow ASCAT Ws received NRT at ECMWF via EUMETCAST

ECMWF observation operator

Cumulative Distribution Function (CDF) of ws (ASCAT or ERS SM index) and ECMWF soil moisture

H-SAF Project: http://www.meteoam.it/modules.php?name=hsaf

ERS & MetOp SM: http://www.ipf.tuwien.ac.at/radar/index.php?go=ascat

Global Soll Moisture Map (August 1995)

Use of ASCAT soil moisture data in the IFS

Use of ASCAT soil moisture data in the IFS:

- Currently used in research mode for soil moisture analysis developments

- CDF match of the ASCAT SM observation to the ECMWF soil moisture (Scipal et al., 2008)

- Quality control and screening, data are reject if:
 - OBS errors > 6% (excludes area of dense vegetation)
 - or Wetland coverage > 15%
 - or Topography complexity index > 20%
 - or Snow covered or frozen soil (in the model)

Use of ASCAT soil moisture in the IFS

ASCAT assimilation in the EKF: 1-3 May 2007, T159

Gain 10 x (m3/m3)/(m3/m3) Increment (mm)

Forecast Error

Difference between Control experiment and ASCAT Assimilation experiment

Forecast Error

Difference between Control experiment and ASCAT Assimilation experiment

ASCAT soil moisture operational monitoring

	Time-averaged geographical mean fields - Mozilla Firefox
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> to	ory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp
🦛 • 🔶 • 🥑 🐼	🗿 🏠 😊 http://www.ecmwf.int/products/forecasts/d/charts/monitor 🔹 🕨 💽 🔍
ECMWF 😅 webpu	ublish CECMWF Data Server CCMEM 🗋 Deimos-L1C 🔤 AGU Mb C journals CH-SAF CPAT 🔷 >
C ECMWF	👔 PrsSACMeeti 🚼 Soil Moisture 😋 27th Eumets 😋 Time-ave 📴 😋 Documents f
CECMWF	Home Your Room Login Contact Feedback Site Map Search:
Rh and wind	About Us Overview Products Forecasts Services Computing Research Modelling Publications News&Events Getting here Order Data Archive Reanalysis Manuals Employment Committees Order Software PrepIFS Seasonal Library Open Tenders Home > Products Forecasts > Data reception statistics > Satellite Data Monitoring > Soil moisture > ASCAT > Time-averaged geographical mean fields>
Data	Time-averaged geographical mean fields
Obs value Number FG departure AN departure STDV obs STDV FG dep STDV AN dep	MEAN FIRST GUESS DEPARTURE (OBS-FG) (ALL) DATA PERIOD = 2009090800 - 2009091206 , HOUR = ALL EXP = 0001 Min: -0.284652 Max: 0.313223 Mean: -0.003126
Your Room Add this product Download PDF (102.4 Kbytes) Postscript (513.6 Kbytes)	60°N 30°N 30°N 0° 30°S 60°S 150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E
	130 W 120 W 30'W 00'W 30'W 0' 30'E 00'E 90'E 120'E 150'E
🗵 Find:	

Operational monitoring of ASCAT soil moisture

First Guess departure (Obs-model)

ESF Fire workshop, 15 September 2009

Passive microwave remote sensing

Past current and future missions for passive MW remote sensing of soil moisture:

Skylab, NASA, L-band, 1973-1974 (but only 9 overpasses available)

AMSR-E (Advanced Scanning Radiometer on Earth Observing System), NASA, C-band (6.9GHz), 2002-now

SMOS (Soil Moisture and Ocean Salinity Mission): ESA Earth Explorer, L-band (1.4 GHz), launch 2nd November 2009

SMAP (Soil Moisture Active and Passive), NASA, L-band, launch 2013

SMOS will be the first satellite missions specifically devoted to soil moisture remote sensing.

In NWP, Near Real Time constraint imposes to use the brightness temperatures (TB) → Importance of the forward operator to transform model variable (soil moisture temperature...) to observable variable (TB)

Community Microwave Emission Model (CMEM)

http://www.ecmwf.int/research/ESA_projects/SMOS/cmem/cmem_index.html

Land surface MW emission model developed at ECMWF for NWP.

Specifically developed as forward Operator for SMOS, but also Suitable at higher frequencies (C-Band and X-Band).

Currently being implemented in IFS CY35R3 (following the all-sky Radiances processing).

Use of SMOS data at ECMWF: see the presentation by J. Muñoz Sabater this afternoon

References:

Holmes et al. IEEE TGRS, 2008 Drusch et al. JHM, 2009 de Rosnay et al. JGR, 2009 Muñoz Sabater et al., sub 2009

ESF Fire workshop, 15 September 2009

🍯 CMEM Downloa	d - Mozilla Fir	refox 🅘							_ 0)	
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> te	ory <u>B</u> ookmark	s <u>T</u> ools <u>H</u> elp								0	
CECMWF		Home	Your Room	Login	Contact	Feedba	<u>ck</u> <u>Site Map</u>	Search			
Extreme Forecast Index tp		Products Forecasts Order Data Order Software > ESA_Projects > mmunity Mic		ĒM	Researc Modelling Reanalysis Seasonal	3	Publicatior Newsletters Manuals Library	Cale Emp	vs&Events ndar koyment n Tenders		
СМЕМ	OWEW. OO		o wave	LIIIIS	SIGHT	Juci					
Documentation Download Source code Input/Output	CMEM Download										
• FAQ	Model source code (top)										
<u>Users</u> <u>Citing</u>	CMEM (Copyright © ECMWF) is a Fortran90 software package. It has been tested with pgf90, gfortran and ifc fortran compilers. It includes 47 subroutines and 9880 lines.										
<u>Contact</u>	Download CM	IEM:									
XX	When you download CMEM, please keep us informed, by sending us an e-mail (see contact). You will then be added to the CMEM users diffusion list and we will keep you informed of any modifications, bug reports and new version of the code.										
STX N	Current version (January 2009):										
	Download CMEM version 2.0 (January 2009)										
The los	Characteristics of this new tag and difference with previous version.										

Bug report on omern v2.0

Summary

- ECMWF has been developing and testing an EKF land surface analysis.
- CPU time is a crucial issue for NWP. It required a complete re-organisation of the surface analysis in the ECMWF assimilation system and a decoupling of the Jacobian computation.
- The EKF surface analysis will be implemented in operation in winter 2009/2010. It will open the possibility to assimilate satellite data, such as SMOS and ASCAT.
- Within H-SAF ECMWF produce root zone soil moisture products
 → First step toward consistent NWP and operational hydrology

Thank you for your attention

More information on the ECMWF Land surface analysis:

IFS documentation:

http://www.ecmwf.int/research/ifsdocs/

Data Assimilation training courses:

http://www.ecmwf.int/newsevents/training/meteorological_presentations/MET_DA.html

ECMWF SMOS page: http://www.ecmwf.int/research/ESA projects/SMOS/index.html

ECMWF H-SAF page: http://www.ecmwf.int/research/EUMETSAT_projects/SAF/HSAF/

