

The IASI Instrument

ECMWF / NWP-SAF Workshop on the assimilation of IASI in NWP Reading, May 6-8, 2009

<u>D. Blumstein</u>¹, E.Pequignot¹, L.Buffet¹, C.Buil¹, P.Hebert¹, C.Larigauderie¹, T.Phulpin¹, C.Camy-Peyret², D.Siméoni³

(1) Centre National d'Etudes Spatiales (CNES), Toulouse, France
(2) Lab de Physique Moléculaire pour l'Atmosphère et l'Astrophysique (LPMAA)
(3) THALES ALENIA SPACE, Cannes, France

Outline

1. Introduction

- 2. Functional Behaviour & Availability
- 3. Radiometric noise & Ice contamination
- 4. Radiometric calibration
- 5. Spectral performances
- 6. Geometry
- 7. Processing and L0 / L1 data Quality

Cnes IASI on-board MetOp-A, B & C MetOp GRAS GOME-2 AVHRR-3 HIRS-4 METOP 1/2 only ASI AMSU-A2 AMSU-AI ASCAT

3 instruments have been built \rightarrow mission duration > 15 years

- MetOp-A launch : October 2006 → IASI declared operational : July 2007
 - IASI spectra assimilated by some NWP Center as early as June 2007

2.5 years of in-orbit experience

ECMWF/ NWP - SAF Workshop on the assimilation of IASI in NWP, Reading , May 6-8 2009

Main characteristics

IASI : nadir Fourier Transform Interferometer

- For atmospheric sounding
- Cover without gap the thermal infrared region from 645 to 2760 cm-1
- Maximum Optical Path Difference (OPD) : +/- 2 cm
- Spectral bands: 3.62 µm to 15.5µm
 - B1 : 8.26 15.5 microns
 - B2 : 5.0 8.26 microns
 - B3 : 3.62 5.0 microns
- 4 off-axis pixels
- Field of view
 - -48°20' / +48°20'
- Spatial resolution :
 - Pixel diameter of 12Km
- Spectral resolution
 - 0.5 cm-1 (apodized spectra)

- Radiometric resolution :
 - 0.2 to 0.4 K (apodized spectra)
- Data flow:
 - 1.5 Mb/sec (average)
- Dimensions of sounder :
 - 1.1 x 1.1 x 1.2 m3
- Mass sounder < 200 Kg
- Power consumption < 240 Watt (worst case EoL)
- Reliability > 0.8
- Availability > 95% over 5 years

+ Integrated Imager Subsystem 64 x 64 (0.8 km @ nadir), 10.3 µm – 12.5 µm

Generated by the IASI L1 PPF and Cal/Val Facility

ECMWF/ NWP - SAF Workshop on the assimilation of IASI in NWP, Reading, May 6-8 2009

Outline

1. Introduction

2. Functional Behaviour & Availability

- 3. Radiometric noise & Ice contamination
- 4. Radiometric calibration
- 5. Spectral performances
- 6. Geometry
- 7. Processing and L0 / L1 data Quality

¢ cnes

IASI : 2 operational modes

Normal Operation Mode

- » Scanning the swath
- » 30 views / 8 sec

External Calibration Mode

(here quasi-nadir looking)

- Fixed viewing direction for 8 sec
- 27 views / 8 sec

Pre-calibrated spectra computed on-board \rightarrow science data TM

- + 1 raw interferogram available on ground every 8 seconds (over 408)
 - selection fully programmable

IASI mode budget

• **95.7** %

cnes

- External Cal Mode
 - **1.2** %
- Instrument outage
 - **3.1** %
 - → Strong pressure from users to minimize outage duration

- On-board software update designed to mitigate SEU affecting Data Processing Subsystem (most of the events)
 - Automatic restart of suspended Data Processing
 - Will be uploaded before summer
 - Will not cover all the anomalies
 - In case focal plane temperature is lost, recovery still takes at least 2 days and 14 hours (passive cooling)

Geo location of IASI SEU/SET anomalies

Instrument outages caused by protons or heavy ions

• Mainly over South Atlantic Anomaly & at High latitudes (North & South)

ECMWF/ NWP - SAF Workshop on the assimilation of IASI in NWP, Reading , May 6-8 2009

Cnes

Outline

1. Introduction

- 2. Functional Behaviour & Availability
- 3. Radiometric noise & Ice contamination
- 4. Radiometric calibration
- 5. Spectral performances
- 6. Geometry
- 7. Processing and L0 / L1 data Quality

Monthly Estimation (Ext.Cal.) by using Hot Black Body target

Cnes

NeDT evolution between April 2008 and February 2009

<u>Stable since last</u> <u>decontamination</u>, except ice effect between 750 et 900 cm⁻¹

ECMWF/ NWP - SAF Workshop on the assimilation of IASI in NWP, Reading, May 6-8 2009

¢ cnes

Estimation by using radiometric calibration coefficient (slope)

- <u>Physical phenomenon :</u> water released by materials at 300K (MLI, electronics)
- → condensation on field lens at 100K (entrance of Cold Box Subsystem)
- → formation of ice
- → instrument transmission decreases
- → less signal
- → SNR decreases
- → NeDT increases

First decontamination in routine phase (21th March 2008)

Decontamination

The decontamination lines heat the different parts of the Cold Box Subsystem (the three passive radiator stages and the sunshield) up to a temperature of 200 K (-73°C) for a duration of 4 hours. Then during the cooling down of the first and second stages, the third stage is maintained at -93°C in order to avoid re-deposition of ice on the cold optics. About 1.5 day later, when the second stage reaches -131°C, the third stage decontamination line can be switched off and the cooling of the first stage begins. It takes about 4 days to cool down the CBS third stage from -73°C to -181.8°C, the final temperature being exactly the same as before the outgassing phase.

Next decontamination

- <u>Criteria :</u> maximum noise increase of 20% (= transmission loss of 20%)
- Last IASI decontamination : 21-24th March 2008 (1.5 year after launch)
- <u>Next one :</u> Mid 2010

- Contamination of the sun shield is low
- Margin sufficient : No need to increase focal plane temperature target
- \rightarrow Stability of the radiometric noise expected in the next years

Outline

- 1. Introduction
- 2. Functional Behaviour & Availability
- 3. Radiometric noise & Ice contamination
- 4. Radiometric calibration
- 5. Spectral performances
- 6. Geometry
- 7. Processing and L0 / L1 data Quality

Scan mirror reflectivity : variation with incidence

Monthly Estimation (Ext.Cal.) by using spectra from CS1 (10°) and CS2 (60°) targets

Scan Reflectivity - Difference between CS2 and CS1

ECMWF/ NWP - SAF Workshop on the assimilation of IASI in NWP, Reading, May 6-8 2009

Cnes

Scan mirror reflectivity

Maximum impact of scap reflectivity variation on radiome

Cnes

• specification = 0.1K

• Update of scan reflectivity in April 2009 (ground segment)

• Used in Level 1 Processing to correct for this effect

(radiometric post-calibration)

Outline

- 1. Introduction
- 2. Functional Behaviour & Availability
- 3. Radiometric noise & Ice contamination
- 4. Radiometric calibration
- 5. Spectral performances
- 6. Geometry
- 7. Processing and L0 / L1 data Quality

Specification for IASI spectral calibration :

• A priori knowledge (instrument design) $\delta\sigma/\sigma < 2.10^{-4}$

> It means $\delta\sigma=0.5 \text{ cm}^{-1}@2500 \text{ cm}^{-1} = \text{IASI}$ spectral resolution (~ 1/3 of the spacing between two CO₂ absorption lines in [2340 - 2380 cm⁻¹] band used operationally for IASI spectral calibration)

- A posteriori knowledge (after on-ground spectral calibration) $\delta\sigma/\sigma < 2.10^{-6}$
 - > It means $\delta\sigma=0.005$ cm⁻¹@2500cm⁻¹ = 1% of IASI spectral resolution)

<u>For a good accuracy of IASI spectral calibration</u>, we need a very good knowledge of Instrument Spectral Response Function (ISRF) => model

Interferometric Axis (tilt)

Total drift with respect to reference position in the spectral database: (+40 µrad,-60 µrad)
As soon as |Total Drift| < 300 µrad => <u>No spectral database configuration update needed</u>

<u>Velocity</u> : continuous on-board monitoring + regular in-depth checks (no evolution)

Position : cube corner offset (shear)

Cube Corner offset Variation

ECMWF/ NWP - SAF Workshop on the assimilation of IASI in NWP, Reading , May 6 - 8 2009

Drift < 1µm (for 2.5 years)

=> <u>No spectral database</u> <u>configuration update</u> <u>needed (up to 4 μm)</u>

¢ cnes

Spectral calibration monitoring

Outline

- 1. Introduction
- 2. Functional Behaviour & Availability
- 3. Radiometric noise & Ice contamination
- 4. Radiometric calibration
- 5. Spectral performances

6. Geometry

7. Processing and L0 / L1 data Quality

• Stable (0.57K) and widely within the specification (0.8K)

- IIS offset in AVHRR raster : along-track (0.1 AVHRR pixel), across-track (0.04 AVHRR pixel)
- IASI pixel centre localisation accuracy in AVHRR raster ~ 100m

Very good stability since the end of the Cal/Val

→ Health check for scanning mirror mechanism

ECMWF/ NWP - SAF Workshop on the assimilation of IASI in NWP, Reading , May 6-8 2009

Correlation between U_{ref} and U series for all j

Spatial integration of IIS pixels in IASI FOVs

for j different positions of IASI FOVs => U(i,j)

 Look for the maximum of correlation => IASI FOVs positions in IIS

IIS (64*64)

IIS/Sounder coregistration

Cnes

- Selection of a continuous sequence of scenes with important contrast (coast line, fractional clouds)
- Spectral integration of IASI spectra in IIS spectral band => U_{ref}(i)

¢ cnes

IIS/Sounder coregistration

Outline

- 1. Introduction
- 2. Functional Behaviour & Availability
- 3. Radiometric noise & Ice contamination
- 4. Radiometric calibration
- 5. Spectral performances
- 6. Geometry
- 7. Processing and L0 / L1 data Quality

ECMWF/ NWP - SAF Workshop on the assimilation of IASI in NWP, Reading, May 6-8 2009

Overview of on-board processing

8 seconds cycle

Cnes

- 30 views (times 4 pixels) for the Normal Op. Mode (27 in Ext.Cal Mode)
- 2 x 2 calibration views : hot (Black Body), cold (space), 2 scanning directions

Main functions

- Preprocessing of the interferograms (raw measurements of the interferometer)
 - Integrity checks (spikes detections, etc.) : limits provided by the ground
 - Non-Linearity correction : tables provided by the ground (today from ground testing)

0.15

0.10

0.05

0.00

-0.05

Nicinterf (Volts)

spike

Computation of calibrated spectra (radiometry)

- Internal tables used by calibration updated every 8 sec
 - Reduced spectra Initial values provided by the ground
 - Integrity checks : limits provided by the ground

• Spectra encoding to reduce data rate

¢ cnes

Overall quality of L0/L1 data

	PN 1	PN 2	PN 3	PN 4
Total % of rejected spectra	0.83	1.01	0.88	0.77
% of rejected spectra by L0 processing (on- board)	0.81	0.99	0.86	0.75

- In NOp, 99% of good quality spectra
- Ground segment is very reliable

Stable since end of Cal/Val

Main contributors to rejected spectra

	Pixel 1	Pixel 2	Pixel 3	Pixel 4
ON-BOARD				
% Spikes (mainly in B3)	0.55*	0.55*	0.55*	0.55*
% NZPD calculation failure	0.15	0.29	0.24	0.15
% radiometric calibration failure	0.02	0.02	0.02	0.02
GROUND				
% Over/Underflows	0.02	0.02	0.02	0.02
TOTAL	0.74	0.88	0.83	0.74
All other parameters	0.09	0.13	0.05	0.03

* Part of « DAY-2 » evolutions

¢ cnes

ECMWF/ NWP - SAF Workshop on the assimilation of IASI in NWP, Reading, May 6 -

ZPD ("Zero Path Difference")

NZPD = sample number at ZPD (calculated by algorithm)

Its knowledge and stability over a calibration period (80s) are necessary for a good radiometric calibration of spectra

Stable since end of Cal/Val (slight seasonal variation of 0.1% => cold scene)

ECMWF/ NWP - SAF Workshop on the assimilation of IASI in NWP, Reading, May 6-8 2009

Cnes

Lessons learned (1/2)

Instrument design provides good stability

- In-flight behavior very close to the one measured on-ground
- Optical bench accurate thermal control (at ambient temperature)
 - Dimensional stability (hence spectral calibration stability)
 - Radiometric calibration stability
 - But effect of "warm" optical bench on noise in band B3
- Modifications after PFM ground testing against ice contamination
 - In-flight confirmation of good results obtained on ground
 - Contamination rate continuously decreasing. BUT not very fast (in particular MLI keep desorbing for very long time in orbit)

Instrument design provides good testability

- External Calibration Mode
- Verification Data Selection (raw interferograms)

¢ cnes

Lessons learned (2/2)

Integrated Imager very valuable

- Easy registration with sounder and AVHRR
- Very useful for test scenes selections
- Provide images for calibration views (CS1,CS2, ... moon)
- Provide images during the ground testing
- On-board processing working flawlessly
 - All on-board monitoring algorithms proved useful to cope with real data
 - Spikes detection, Reduced Spectra and Radiometric Calibration integrity checks

¢ cnes

Conclusions

- ✓ After 30 months in orbit
 - IASI is performing very well
 - no redundancy used
 - all mission requirements are met : both instrument and processing
 - the instrument is extremely stable : radiometry, spectral, geometry
 - mechanisms (Cube Corner, Scan) show no evolution in orbit
 - radiator (passive cooling) show no evolution in orbit
 - There is still a lot of science to be done with IASI data
 - Meteorology and Climatology
 - Atmospheric chemistry
- ✓ During the routine phase, IASI Technical Expertise Center (IASI TEC in CNES premises in Toulouse) takes care of :
 - In-depth Performance monitoring, Processing parameters updating
- ✓ In parallel with the operational monitoring performed by the EUMETSAT EPS/CGS teams :
 - Near Real Time PDU analyses, Radiance monitoring

■Visit our web sites :

- <u>www.cnes.fr</u>
- <u>www.smsc.cnes.fr</u>/IASI

BACK-UP

ECMWF/ NWP - SAF Workshop on the assimilation of IASI in NWP, Reading, May 6-8 2009

cnes

Spectra affected by Spikes

Number of IASI spectra available for each sounding in case of a spike

- Suggestion for short term
 - since the 4 IASI pixels are not assimilated, a dynamic selection of the selected pixel would increase drastically measurements availability.
- For long term
 - Day 2 evolution of ground processing : make spectra available for bands B1 and B2 when a spike occurs in B3.

ECMWF/ NWP - SAF Workshop on the assimilation of IASI in NWP, Reading, May 6-8 2009

- 98.5 % of earth views (groups of 4 pixels) are not affected by spikes
- Among the 1.5 % of earth views affected by spikes
 - Mainly over the South Atlantic Anomaly (SAA) in band B3
 - 82.2 % have more than 3 spectra available
 - 97.9 % have more than 2 spectra available
 - 99.8 % have more than 1 spectrum

COLS Spectra rejected by NZPD calculation failures (1/2)

A small fraction of spectra are not available because of not computed NZPD by on-board processing

- Less than 0.3 % for all pixels
- Stable since end of Cal/Val (slight seasonal cycle / amplitude ~ 0.1%)
- Geographic repartition
 - 1 or 2 occurrences max per month per box of 0.5 x 0.5 deg

ECMWF/ NWP - SAF Workshop on the assimilation of IASI in NWP, Reading, May 6-8 2009

¢ cnes

Spectra rejected by NZPD calculation failures (2/2)

Brightness Temperatures from th IIS imager

Black curve : Histogram of BT in the vicinity of rejected spectra (about 1/4 c the IIS image)

Red curve : Histogram of BT in the IA: footprint for rejected spectra

Conclusions

- Affected pixels : 0.3 %
- Histogram of rejected pixels : FWHM = 30 K
- Close shape of the 2 histograms → no significant impact on climatology