National Centre for
Atmospheric Science

NATURAL ENVIRONMENT RESEARCH COUNCIL

Land surface - atmosphere coupling strength in - Walker %

INSTITUTE

CMs: the impact of soil physics. University of

P.L. Vidale | A. Verhoef | M.E. Demory | M. Roberts ~§ Readlng

The Hadley Centre’s HadGEM1 (Johns et al., 2006) — is a state of the art Global Environment Model, building on, but substantially
. changed from HadCM3. The new climate model includes semi-Lagrangian dynamics and increased horizontal as well as vertical
Introduction resolution. All the structural changes are combined with an almost completely new suite of physical parameterisations, and include
additional processes, such as the sulphur cycle and cloud aerosol effects.

Understanding the land surface component of the hydrological cycle has been a high priority for decades. The routing of
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water through the soil-vegetation system is crucial to our understanding of the water-carbon cycles, as well as for the . muiat
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simulation of floods and droughts. The lack of global, homogeneous data regarding soil moisture amount and variability
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A historic error in the parameterisation of the water retention curve in the Met Office The parameterisation of thermal conductivity in the soil has also been updated, 6 R -5}‘ WREPL AN -
land surface models (MOSES and JULES) has been found recently (see also Dharssi using a recent formulation from Lu et al. (2007). The diagram below shows how D 5\; /_;’ A o B S ARREREL-.  4EN
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in Cosby et al.'s (1984) paper. This error affects matric potential (suction), saturated
hydraulic conductivity, as well as the soil moisture thresholds that control vegetation
activity. The tables and diagrams below illustrate the consequences of this error for
FLUXNET sites that span a typical range of soil types. Sand, Silt, Clay thermal conducivity (W/mk)

behaviour and its interplay with soil water dynamics, profoundly affects plant
activity and evaporation.

Figure 3: Global maps of latent heat flux (top) and GPP (bottom) from the experiments in Table 2. On the top left of each panel, results from the CTL
experiment are shown; the additional plots show the differences introduced by each incremental experiment.

The global maps of latent heat flux and GPP, as well as seasonal cycles of the regional evolution of key surface and sub-
surface variables, reveal a chain of mechanisms that is consistent with the results from the single-site simulations: a change in
the definition of mineral composition (see Table 1) has mostly a minor impact, except locally over small areas in which a large
change in mineral content is imposed. Correcting the soil hydraulic parameters to the log-10 formulation depresses latent heat
fluxes from the surface during the growing seasons, as well as vegetation production. Updating the parameterisation of soll
thermal conductivity makes it possible to increase soil heat flux, e.g. to melt deep soil water at high latitudes, enhancing deep
drainage, but also partially restoring the deficit in plant photosynthetic activity, through increased liquid water ratio in the soil.

Soil hydraulic parameters, values in bold concern the corrected hydraulic parameterisation
Y. inm, K;inmm s, all 8in m®m=.
s stands for saturation; c for critical point; w for wilting point.

Site P, K, 0, 0, 0,-0., y
El Saler 0.026/0.089 0.0086/0.0109 0.164/0.206 0.082/0.103 0.083/0.103 Y =1/Js(9 / HS)
Boreas_NSA 0.043/0.288 0.0052/0.0034 0.238/0.314 0.137/0.181 0.101/0.133

Bondville 0.038/0.217 0.0051/0.0033 0.257/0.316 0.163/0.201  0.094/0.115 K = K_ (9 /0. )”’+3
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The JULES land surface model Month Month Month
JULES is the Joint UK Land Environment Simulator. It is based on MOSES (Met Office Surface Exchange System), the land surface model used in the Unified Model of the UK Met g mpereture, o200 oy omostre, v HemE g o iemperature, w210 g mosture, v FemE
Office. MOSES was originally designed to represent the land surface in meteorological and climate models, but both MOSES and JULES are increasingly used for other purposes: I S : ' e ol : ,
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Simulations of the impact of soil physics at individual locations around the globe, using FLUXNET or GCM meteorological forcing, Pos e 0w Poso e B SR Poso e B
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reveal _the _strqng interplay betweer_1 soil dynamics gnd plant actmty, with S|gn|f|0§nt reductions in NPP atllocatlons w.here water Figure 4: Seasonal variation in key surface (top two panels) and soil (bottom) variables for the GCM simulation runs presented
extraction is hindered after correcting for the error in the computation of hydraulic parameters. In cold climates, the impact of in Table 2. Plots are for regional domains over Amazonia on the left-hand panel; for North East Asia on the right-hand panel.

increased thermal conductivity is well visible at depth, where more liquid water is available in the growing season. The four lines

represent the different simulations detailed in Table 2. . . .
P 4. Implications for land surface — atmosphere coupling
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Figure 2: Soil moisture content and GPP at selected FLUXNET sites worldwide: El Saler (Spain), Bondville (USA), Boreas—NSA (Canada). Figure 5: Soil water and surface temperature anomalies over selected regional domains: Amazonia and NE
Asia. Monthly deviations for the Amazonian rain season (December, January and February), as well as for the
boreal summer in NEAS (June, July and August). 10 years are shown, comprising a total of 30 pairs.
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