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Overview

• Potential overlap with other talks, because observations are dealt with in 
at least:
– Models and model intercomparison results (Session 1)

• Observations for model development: Process studies oriented
• Observations for model validation
• Observations for “Benchmarking”

– Data assimilation talks (all of them)
• They concentrate on data assimilation methods, but also on observations 

used/needed
– All talks in session 3

• Scope of the talk: To deal with observations for
– Data assimilation
– Verification & monitoring

• Verification (& monitoring) is a regular check of model results against 
observations in order to have early warning of drifts and build a 
representative sample of model errors

– Timeliness is essential
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Observations for model development (1/2)

TESSEL (BLUE)
HTESSEL (new roughness) (RED)

HTESSEL (black)
HTESSEL‐new snow(BLUE)
HTESSEL‐snow multi‐layer (RED)
• Observations
.....       Model Median

SWE in Alptal: Open site, 2003-04

•TESSEL to HTESSEL reduces the coupling atmosphere-snow (z0) with 
much less evaporation

•HTESSEL to STESSEL new (lower) albedo in melting conditions favours 
earlier melting 
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Observations for model development (2/2)

Snow and soil Temperature in Fraser: Open site

T snow

T soil 5 cm

T soil 50 cm

•HTESSEL (CTR) to NEW snow decreases the density, favouring higher soil 
insulation and less soil cooling

•Multilayer snow model (ML) improves snow temperature and soil T at 5 cm 

HTESSEL

STESSEL

MultiLayer
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General considerations: Seasonal  
surface budgets

• Surface data assimilation estimates state variables combining 
(a) imperfect models forced by imperfect atmospheric forcing 
with (b) inaccurate and/or proxy data

• General evolution equation for state variable X
dX/dt = Σi Fi Fi are fluxes

X = Tsoil , Snow_mass, soil_water, biomass

• The seasonal variation of X is
dX/dt = 0 Tsoil
dX/dt ~ 1/3 Fi Soil water
dX/dt ~ Fi Snow mass 
dX/dt ~ ?? Biomass

• For soil water and snow mass data assimilation increments 
are commensurate with the seasonal evolution, creating 
closure problems in the surface budgets
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Mackenzie river basin era40:
Surface snow budget

Surface analysis increments are of the same order of the 
seasonal evolution of the snow mass budget

[ ]1 sF Ea aS Sn MSn = + ++ Δ− −∑

Betts et al, 2003: JHM

SWEinc ]
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Synergy of observations (soil moisture)

• Screen level temperature and humidity are indirectly linked to soil 
moisture through evaporative cooling.

• Microwave brightness temperature contains more direct information of 
near surface soil moisture and is less dependent on atmospheric conditions.

– Penetration depth of μw Tb depends on:
• Soil texture
• Soil temperature profile
• Vegetation fraction
• Vegetation water content
• Surface roughness
• LSMEM (Land Surface Microwave Emissivity Model) for model equivalent of Tb

• Rate of change of thermal infrared brightness temperature contains 
information on soil moisture, but

– Clear sky data only;
– Model Tskin is very sensitive to aerodynamical resistance (surface roughness)

• Vegetation state (LAI, fAPAR) contains information on soil moisture, but
– Clear sky data only;
– Saturation of LAI and fAPAR at high values
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Root zone soil moisture:
observables and caveats

Root zone
Soil moisture

BL T/RH Vegetation state
(LAI, fAPAR)

w Tbμ
L- and C- band

(d=1-5 cm)

•Fair weather spring/summer 
conditions

•Low wind speed

•Clear-sky data

•Saturation of W=f(LAI)

•Low water on vegetation

•C-band limited to non-forest 
areas
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Observations for verification

• Verification (& monitoring) is a regular check of model results 
against observations in order to have early warning of drifts 
and build a representative sample of model errors

• Order out of caos
– How to extract a model relevant message from a large set of model vs. 

observations
• Climate/ecosystem/season conditional sampling
• Process oriented thinking (e.g., new snow TESSEL model development)

• The importance of a large sample for robust results
– ERA-I

• Timeliness
– Any set of observations needs to be available to NWP centres within a 

few months
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Some examples

• In-situ data
– Surface radiative fluxes

• From BSRN
• From remote sensing

– Fluxnet results
– COSMOS (cosmic rays for soil moisture)
– Regional networks in support of SMOS cal/val
– US SNOWTEL

• Remote sensing
– LST (or radiances from IR (10.9 and 12.4 channels) from geostationary
– Vegetation results
– MODIS snow cover fraction
– MODIS albedo
– Remote sensing estimates of carbon assimilation (NPP, NEE) can be 

very useful when NWP models become fully “green”
– We desperately need a reliable dataset of daily precipitation over land
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LandSAF in a nutshell

• EUMETSAT Satellite Applications Facility dedicated to 
algorithm development, validation and operational   
production of land surface related products (primarily) based 
on European meteorological satellites (MSG and METOP)
– 7 Institutes in 6 countries
– Continuous Development Operational Phase I (2007-2012)

• Real time operations (i.e., some products are available every 
15 min, ~2-3 hours after observed) 

• An efficient and modular real time operational system, to 
which new functionalities can be added on demand

• Reviewed (~annually) by technical and scientific review panels
• Most products can be used for verification & monitoring of 

NWP
• A few products can be used for surface data assimilation
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The LandSAF Consortium

• Instituto de Meteorologia (IM), Portugal
• Meteo-France (MF), France
• Royal Meteorological Institute (RMI), Belgium
• Finnish Meteorological Institute (FMI), Finland
• IMK, University of Karlsruhe
• IDL, University of Lisbon
• UV, University of Valencia

• Organisation principles
– Algorithms developped at one of the participating Institutes
– Algorithms handed over to IM for integration and production
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02 03 04 05 06 07 08 10 11 12 13 14 15 16 17 18 19 20010099

Meteosat-8 
(MSG-1)

Meteosat-9 
(MSG-2)

MetOp-A

Meteosat-10 
(MSG-3)

MetOp-B
Meteosat-11 

(MSG-4) MTG-1

MetOp-C

Development 
Phase:
Sep 1999

Initial 
Operations 
Phase:
Feb 2005

Continuous 
Development & 
Operations Phase I:
Mar 2007

LandSAF Chronogram
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LST ↓LongWave Flux

Albedo ↓ShortWave Flux

SEVIRI/Meteosat

Land SAF MSG products

Surface Radiation

Snow Cover

Evapotranspiration

Surface Water Balance

Fraction Veg Cover

LAI

fAPAR

Vegetation

Fire Detection

Fire Radiative Power

Fire Risk (Europe)

Wild fires

Increased level of maturity
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• All products have a quality flag (or an error bar)
field associated

• All products have a Product User Manual and a 
comprehensive Validation Report

• 4 production areas for MSG
--Europe
- N. Africa
- S. Africa
- S. America

• Variable time resolution
--15 min to 10 days

• SEVIRI resolution (3x3 to 3x5 km)

• EPS products generation started

Product characteristics
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Land Surface Temperature

• Estimates of LST are regularly validated by comparison with
– In-situ radiometer observations
– Comparison with LST from other sources (e.g., polar orbiters)

• In-situ observations
– Africa Europe

• Gobabeb, Namibia Évora, Portugal
• AMMA area BSRN



ECMWF/GLASS w/s,  Nov 2009

Namibia

LST: In situ obs
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LST - no permanent site with ground measurements within 
MSG disk before ....

ÉVORA site

In-situ observations
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Mitra, Évora
(38° 32'N ; 8° 00'W)

Fluxnet network site

Tower ~28m

Rotating Radiometer
(3 FOV at ground Ø 3m)

KT15 (1 FOV at ground Ø 14m

Évora
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LST: Weighted averaged of 3 
radiometers



ECMWF/GLASS w/s,  Nov 2009

(ºC) BIAS RMSE

SEVIRI +1.9 2.2

MODIS -1.8 2.6

(ºC) BIAS RMSE

SEVIRI -1.7 2.1

MODIS -2.6 2.7

Daytime

Night-time

Évora: SEVIRI & MODIS vs. OBS
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LST Errors
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Model parameters/ Implicit input variables
↓

TCWV (ECMWF); view angle

Algorithm uncertainty
↓

Retrieval conditions

Input errors
↓

Sensor noise; emissivity

Estimating LST uncertainty on an 
operational basis
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LST LST Error Bars
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W
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LST: Value & uncertainty estimate
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7 years ago ...

• Model skin temperatures have large errors over land, underestimating the 
diurnal cycle, in arid/semi-arid areas

Trigo and Viterbo, 2002

METEOSAT

Clear sky Tb window channel

OBS - model
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LST: Conclusions

• Uncertainty estimate is essential for many applications
• LSA SAF comes with an associated δLST
• The error is larger in areas

– Dry areas, with large uncertainty on surface emissivity
– Moist atmospheres and high viewing angles (mask out of values where 
δLST > 4 K

• This is complemented by validation from independent sources 
and in-situ validation

• We came a long way since first evaluation 7 years ago, at least 
on the remote sensing side
– But we do not know where we are on the model side

• LST from the LSA SAF can be used for
– Model verification & monitoring
– Data assimilation
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Different LSA SAF 
algorithms & ECMWF 

versus

In Situ Observations 
(BSRN)

3-hourly averages

Data collected between 

2005 and 2007

Validation of DSLF (Downward Surface 
Longwave Flux) against in-situ data
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Bias: +2.4 Wm-2

RMSD: 20.0
Bias: -10.6 Wm-2

RMSD: 25.1

Cloudy Sky

Clear Sky

Bias: -3.4 Wm-2

RMSD: 10.0
Bias: -7.0 Wm-2

RMSD: 13.5

DSLF: Carpentras (France), mid-latitudes

LSA SAF

LSA SAF
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Cloudy Sky

Bias: -21.8 Wm-2

RMSD: 32.1

Bias: -13.7 Wm-2

RMSD: 23.8

Clear Sky

Bias: -3.7 Wm-2

RMSD: 12.8

Bias: -3.7 Wm-2

RMSD: 14.5

DSLF: Toravere (Estonia), high latitudes

LSA SAF

LSA SAF



ECMWF/GLASS w/s,  Nov 2009

Bias: -15.2 Wm-2

RMSD: 24.5

Bias: -29.6 Wm-2

RMSD: 35.5

Bias: -5.6 Wm-2

RMSD: 13.5

Bias: -9.7 Wm-2

RMSD: 17.1

Clear Sky

DSLF: Tamanrasset (Algeria), Sahara

Cloudy Sky

LSA SAF

LSA SAF
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Josey et al 03
LSA SAF
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North South

Clear Sky Bias
•LSA SAF and ECMWF 
present similar results;

• Problem areas:
High latitudes: 

snow and clouds
Deserts: Very high 

aerosol loads.
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Josey et al 03
LSA SAF
ECMWF
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Cloudy Sky Bias

• LSA SAF and ECMWF 
present comparable 
results;

• Problem areas:
High latitudes –

modelling low DSLF 
values & cloud 
detection.
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Less is more: MSG vs. MODIS 
vegetation parameters

LA
I

•MSG product is more robust against double-season false alarms

•The temporal continuity benefits the  accuracy of retrieved seasonal parameters

•MODIS (1 km) has better resolution than MSG (3 km)

•Both products are based on cloud-free images only, and MSG samples 50 
times/day, while MODIS samples 2 times/day

•Improved time sampling of MSG compensates lower resolution 

Leaf Area Index: Central Africa
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Conclusions

• Conventional observations for data assimilation: A few 
datasets might become available in the near future, but no real 
revolution
– Important shortcoming: SYNOP snow depth information is ambiguous

• Remote sensing observation:
– L-band & C-band Tb for soil moisture
– C-band Tb for SWE
– LST from IR for soil moisture
– Vegetation (LAI/fAPAR) to initialize soil moisture and/or biomass
– Radiative surface forcing (LSA SAF)

• Observations for validation:
– LSA SAF LST, radiative fluxes, vegetation parameters, …
– FLUXNET
– Main gap: Precipitation over land
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