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 Potential overlap with other talks, because observations are dealt with in
at least:
— Models and model intercomparison results (Session 1)
* Observations for model development: Process studies oriented
e Observations for model validation
e  Observations for “Benchmarking”

— Data assimilation talks (all of them)

* They concentrate on data assimilation methods, but also on observations
used/needed

— All talks in session 3

 Scope of the talk: To deal with observations for
— Data assimilation

— Verification & monitoring

* Verification (& monitoring) is a regular check of model results against
observations in order to have early warning of drifts and build a
representative sample of model errors

— Timeliness is essential
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Observations for model development (2/2)
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e (Observations for data assimilation
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o LSA SAF General considerations: Seasonal
surface budgets

e Surface data assimilation estimates state variables combining
(a) imperfect models forced by imperfect atmospheric forcing
with (b) inaccurate and/or proxy data

* General evolution equation for state variable X
dX/dt = X, F; F, are fluxes
X =Tsoil , Snow_mass, soil_water, biomass

e The seasonal variation of X is

dX/dt=0 Tsoil
dX/dt ~1/3 F; Soil water
dX/dt ~ F,; Snow mass
dX/dt ~ ?? Biomass

 For soil water and snow mass data assimilation increments
are commensurate with the seasonal evolution, creating

closure problems in the surface budgets
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Mackenzie river basin era40:

Surface snow budget
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Surface analysis increments are of the same order of the

seasonal evolution of the snow mass budget
Betts et al, 2003: JHM
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& LSA saF Synergy of observations (soil moisture)

e Screen level temperature and humidity are indirectly linked to soil
moisture through evaporative cooling.
* Microwave brightness temperature contains more direct informatiopg

— Penetration depth of pw Tb depends on:
* Soil texture
* Soil temperature profile
* Vegetation fraction
* Vegetation water content
Surface roughness

ol
B data only;
model Tskin is very sensitive to aerodynamical resistance (surface roughness)

* Vegetation state (LAI, fAPAR) contains information on soil moisture, but

— Clear sky data only;
— Saturation of LAI and fAPAR at high values
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% LSA SAF Root zone soil moisture:
observables and caveats

BL T/RH Vegetation state
(LAIL fAPAR)

*Clear-sky data
*Saturation of W={f(LAI)

*Fair weather spring/summer
conditions

*Low wind speed Root zone
Soil moisture

*Low water on vegetation

*C-band limited to non-forest
areas

uw Th
L- and C- band
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e Verification (& monitoring) is a regular check of model results
against observations in order to have early warning of drifts
and build a representative sample of model errors

e Order out of caos

— How to extract a model relevant message from a large set of model vs.
observations

e Climate/ecosystem/season conditional sampling
* Process oriented thinking (e.g., new snow TESSEL model development)

e The importance of a large sample for robust results
— ERA-I
 Timeliness

— Any set of observations needs to be available to NWP centres within a
few months
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Some examples

e In-situ data

Surface radiative fluxes
e From BSRN
* From remote sensing

Fluxnet results

COSMOS (cosmic rays for soil moisture)
Regional networks in support of SMOS cal/val
US SNOWTEL

 Remote sensing

LST (or radiances from IR (10.9 and 12.4 channels) from geostationary
Vegetation results

MODIS snow cover fraction

MODIS albedo

Remote sensing estimates of carbon assimilation (NPP, NEE) can be
very useful when NWP models become fully “green”

We desperately need a reliable dataset of daily precipitation over land
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 Land SAF examples: Remote sensing based data for data
assimilation and/or verification
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& LSA SAF LandSAF in a nutshell

« EUMETSAT Satellite Applications Facility dedicated to
algorithm development, validation and operational

production of land surface related products (primarily) based
on European meteorological satellites (MSG and METOP)

— 7 Institutes in 6 countries
— Continuous Development Operational Phase I (2007-2012)

* Real time operations (i.e., some products are available every
15 min, ~2-3 hours after observed)

e An efficient and modular real time operational system, to
which new functionalities can be added on demand

 Reviewed (~annually) by technical and scientific review panels

 Most products can be used for verification & monitoring of
NWP

* A few products can be used for surface data assimilation
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The LandSAE Consortium

T R T =

Instituto de Meteorologia (IM), Portugal
Meteo-France (MF), France

Royal Meteorological Institute (RMI), Belgium
Finnish Meteorological Institute (FMI), Finland
IMK, University of Karlsruhe

IDL, University of Lisbon

UV, University of Valencia

Organisation principles
— Algorithms developped at one of the participating Institutes
— Algorithms handed over to IM for integration and production
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& LSA SAF Product characteristics

e All products have a quality flag (or an error bar)
field associated

e All products have a Product User Manual and a
comprehensive Validation Report

e 4 production areas for MSG |
- Europe 2SS
- N. Africa e g
- S. Africa
- S. America

SEVIRI resolution (3x3 to 3x5 km)

e Variable time resolution
- 15 min to 10 days

 EPS products generation started
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kg Land Surface Temperature

e Estimates of LST are regularly validated by comparison with
— In-situ radiometer observations

— Comparison with LST from other sources (e.g., polar orbiters)

e In-situ observations

— Africa Europe
* Gobabeb, Namibia Evora, Portugal
e AMMA area BSRN
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SLSASAE 1 ST validation: LSA SAF vs. in situ
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= LSA SAF In-situ observations

LST - no permanent site with ground measurements within
MSG disk before ...

2005/07/15 - 12:00 UTC

EVORA site
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- LST: Weighted averaged of 3
’ radiometers

downward
radiation

scene
emissivity

(L1, L2, L3) average
4 LRR+ (1_ €RR _sfc)
LST InSitu

1/2
5(I—STInSitu ) = [(5 LSTg )2 + (5 I-STInSituVarT )2 + (5 I—STInSituVarSp)z + (5 RotRad )2]
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Zisasar  Estimating LST uncertainty on an
operational basis

LST Errors

2
S LST

Algorithm uncertainty

"

Retrieval conditions

Input errors

"

Sensor noise; emissivity

Model parameters/ Implicit input variables

"

TCWV (ECMWEF); view angle
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LST: Value & uncertainty estimate
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7 years ago ...

 Model skin temperatures have large errors over land, underestimating the
diurnal cycle, in arid/semi-arid areas
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= LSA SAF L.ST: Conclusions

* Uncertainty estimate is essential for many applications
 LSA SAF comes with an associated oLST

 The error is larger in areas
— Dry areas, with large uncertainty on surface emissivity

— Moist atmospheres and high viewing angles (mask out of values where
oLST >4 K

e This is complemented by validation from independent sources
and in-situ validation

* We came a long way since first evaluation 7 years ago, at least
on the remote sensing side
— But we do not know where we are on the model side

e LST from the LSA SAF can be used for

— Model verification & monitoring
— Data assimilation
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@ isasaF  Validation of DSLF (Downward Surface
' Longwave Flux) against in-situ data

Different LSA SAF
algorithms & ECMWF
vVersus 5]
In Situ Observations I
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A )T Carpentras (France), mid-latitudes
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Cloudy Sky Bias

* LSA SAF and ECMWF
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o LSA SAF Less is more: MSG vs. MODIS
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*MSG product is more robust against double-season false alarms

*The temporal continuity benefits the accuracy of retrieved seasonal parameters

*MODIS (1 km) has better resolution than MSG (3 km)

Thanks to J. Garcia-Haro, U. Valencia

*Both products are based on cloud-free images only, and MSG samples 50
times/day, while MODIS samples 2 times/day

eImproved time sampling of MSG compensates lower resolution
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e Conclusions
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 Conventional observations for data assimilation: A few
datasets might become available in the near future, but no real
revolution
— Important shortcoming: SYNOP snow depth information is ambiguous

 Remote sensing observation:
— L-band & C-band Tb for soil moisture
— C-band Tb for SWE
— LST from IR for soil moisture
— Vegetation (LAI/fAPAR) to initialize soil moisture and/or biomass
— Radiative surface forcing (LSA SAF)

e Observations for validation:

— LSA SAF LST, radiative fluxes, vegetation parameters, ...
— FLUXNET

— Main gap: Precipitation over land
ECMWF/GLASS w/s, Nov 2009
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