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PrinCipIe Questions NCAR

 How does land surface physiography (terrain
features) affect the spatial and temporal
distribution of moisture availability?

 How does the spatial distribution of soil moisture
In complex terrain impact land-atmosphere fluxes
and convective circulations?

« What forcing feedbacks do these circulations
Impart back to the land surface?
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Background

« Terrain features affecting moisture
availability (scales ~1km)

u Routing processes: the . ., ﬁar;iF Soii "n"l.r‘aterand Runoff Terms

redistribution of terrestrial water
across sloping terrain
 Overland lateral flow (dominates
In semi-arid climates)

 Subsurface lateral flow
(dominates in moist/temperate
climates)

 Shallow subsurface waters (in
topographically convergent zones)

= Qther land surface controls:

 Terrain-controlled variations on
insolation (slope-aspect-shading)

» Soil-bedrock interactions
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Background NCAR
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« Shallow groundwater Sensitivity of Noah modeled LE to
specification of water table depth

(Fang, Miguez-Macho, Niu _
; (Rajagopal et al, J. Hydromet, sub.)
and Yang, Rajagopal)

Percent bias in ET
Groundwater Depth (m) (w.r.t. observed ET @ GW
depth of 2.5m)
15 31.22
. . 2.5 1.8
e Terrain routing (Maxwell 0 -

and Kollet)
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Background NCAR

PF.ARPS 36 hr

e Terrain insolation (Zangl|,
Whiteman, Egger)

e Shallow groundwater (1-D:
Fang, Miguez-Macho, Niu
and Yang, Rajagopal)

LE

(warm colors =
high values)

e Terrain routing (3-D:
Maxwell and Kollet,
Famig.&Wood)

Maxwell et al., Adv. Water Res. 2007
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Terraln circulations: R
0 ea
« Background circulation
/N/\L
0, > 0,
* Increased circulation % 0,
(dry peaks) \ / X
0,
0, >> 0,
e Suppressed circulation 0 0,

(wet/snow peaks)

N\

0,

0, << 0,
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Terrain circulations: Complications

NCAR

 How do routing processes influence these
circulations?

 How do wet valley-dry peak or dry valley-wet peak
conditions influence the terrain circulation? Similarly for
mountain-plain circulations?

» At what spatial and temporal scales do these processes
become significant?

* |s there a detectable difference from an NWP/QPF
perspective?

 What are the potential reasons for such differences?
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Outline NCAR

 Experiment: Explore the influence of
routing processes on the simulation of a
flood producing convective event in the lee

of orography

Rocky Mountains  Foothills Great Plai

Western Norlh Amerlca
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Coupled WRF-Hydro Flash Flood Fore
in the Colorado rFront Range:

. Wﬂ%irs@eﬁ’;%fﬁ, %
 WRF Model Options e
= No convection %
parameterization
= Purdue/Lin 6-class
microphysics

_ 4 km and 1 km WRF Domains
= RRTM LW, Dudhia SW |

* Yonsei PBL, M-O sfc lyr

= Noah land surface model )
w/ and w/out coupled T
Noah-distributed routing j—

= Operational runs from 00z
(research run from 122z)

b0z | if
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Recent Model Devélopment Activities:
Distributed hydro

Jointly developed

e physics for
i@y and water

Crle

nter piece of the
AR HRLDAS and
ASA-LIS

NCAR

ogical routing

Figure 1 Umnified Noah Land Surface Model

(Pan and Malut, 1987 Chen et al., 1997, Chen and Dudhia, 2001,
Ek et al.. 2003)
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Recent Model Development Activities:
Distributed hydrological routing

Explicit dynamical hydrologic/hydraulic modeling (< 1km):

 Integration of landscape resolving LSMs with Cloud Resolving
Models

Parallelized for High Performance Computing Platforms

Groundwater discharge,
reser\Y{oir routing &
' 3y
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Viocdel Experirn

ents

(

July 28, 1997 Fort Collins flood event

1. Spin up land surface initial conditions with and without
terrestrial routing (2mo. spin-up, avoiding snowmelt)

2. (NOT SHOWN) Run WRF with fully-coupled routing and
compare against fully-coupled non-routing case:

3. Compare/contrast fully-coupled WRF simulations with spun-up
land surface conditions (w/ and w/out routing) but no routing
during simulation

Aim: Assess the Impact of land surface
Initializations on simulated storm event
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Case Study: 1997 Ft. Collins Flood

E ven t Mesoscale Analysis

1 km WRF-w/out routing:
Init. July 27 12z

1 km WRF-w/ routing:
Init. July 27 12z
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Case Study: 1997 Ft. Collins Flood
E ven t Mesoscale Analysis

1 km WRF-no routing:
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Case Study: 1997 Ft. Collins Flood

E ven t Mesoscale Analysis

Observed Analysis

“Denver Cyclone”
.

1 km WRF-w/ routing:

ln“ir. July 27 12z
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Case Study: 1997 Ft. Collins Flood

E ven t Mesoscale Analysis

1 km WRF-w/out routing:
Init. July 27 12z

1 km WRF-w/ routing:
Init. July 27 12z
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Case Study: 1997 Ft. Collins Flood

E ven t Mesoscale Analysis

1 km WRF-w/out routing:
Init. July 27 12z
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Init. July 27 12z
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Case Study: 1997 Ft. Collins Flood
Event Accumulated Precipitation

WREF vs. Rain Guages WRF vs. Rain Guages
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RESUILSE UNtanglingianc=aumne feeclbacfﬁg

NCAR
» Trying to diagnose the ‘pre-storm’ mechanisms causing the
difference in a fully coupled mode for a single event is difficult
due to:
» |nternal feedbacks
= Differing cloud fields
= Differing amounts of surface available energy
= Changes in advective fields

POT TEMP at 2 M

LATENT HEAT FLUX AT THE SURFACE
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Legend
D Statna

Elevation {1km)

.Hw.m

Low: 0

SMOIS (m3 m-3) PBLH (m) RAINNC (mm)

south_north
south_north
south_north

west_east

Range of SMQIS:-02 to 0.2 m3 m-3

Range of PBLH: -2000to 2000 m

west_east

west_east

Range of RAINNGC: -150to 150 mm

3110011322006

inull) Thu Aug

June 21 2001, 14 hr simulation (12z-02z), IHOP Field Campaign
* Identical initial conditions, coupled WRF sims w/ and without routing
» Detectable differences with some spatial coherence
» However differences in precipitation largely offset one another (i.e.
shifting of events



Accum. ET (mm)

Accumulated ET from DMIP-2 Elk R. Basin
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1 km topo NLCD LU STATSGO Soils

Surface Evap (0-250 mm) Deep Drainage (0-500 mm)  Deep soil moisture (+/- 1%)

* Routing minus no-routing simulations show more soil moisture,
more surface evap and more deep drainage in routing case

o Spatial patterns of differences exhibit complex interplay between
terrain and solls
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Conclusions

» Several modeling studies now showing that routing processes
can be important to high resolution NWP, but how real is this
sensitivity and are there any consistent mechanisms?

» For the Ft. Collins flash flood case study:

= Use of routing during coupled runs had minimal impact over
the timescale of the event studied

* |n routing vs. no-routing spin-up experiment, storm initiation
was earlier and had slow movement compared to when
routing is not used during spin-up

= Due to internal feedbacks (cloud forcing) it is likely that

Impacts of routing, like in other convective studies, will be
difficult to generalize

* For Noah-d, permitting routing changes the soil moisture
climatology to wetter conditions if re-calibration is not taken into
account
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