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Experimental Setup with GEOS-5 DAS 
•  2x2.5x72 resolutio 
•  IAU-based 3DVAR 
•  Statistics collected over 31 00Z 24-hr forecasts for August 2007 
•  Broad LPO excluding only top layers of model 

Background photo from Cloud Appreciation Society by: 
Katrin Pfeifer, Afternoon sky with the moon, taken in 
Castagneto Carducci, Tuskany, Italy.  

An even closer look at the results reveals  
more differences among the various 
forecast error measures and the two 
approaches. The figure on the left looks at 
the impacts of the individual channels of 
AIRS. When using the state-space 
(adjoint-based) approach with a measure 
that emphasizes the troposphere, the 
troposphere-peaking channels of AIRS are 
the ones that show the largest impacts; 
when the stratosphere is emphasized, 
most of the AIRS impacts come from the 
channels peaking there. When the forecast 
error measure is based on a norm that 
uses weights compatible with the weights 
given to the observations by the analysis 
(for either approach) the impacts are more 
evenly spread among the various channels 
of AIRS. 

The figure on the left gives a summary of the 
observation impacts on the 24-hr forecast for the 
individual main observing systems used in GEOS-5 
DAS. The panels show the fractional impacts when 
the state-space (adjoint-based) approach is used 
with three different norms: tropospheric-centric total 
(dry) energy norm (top-left), evenly-weighted total 
(dry)  energy norm (top-right); and inverse 
observation error covariance norm (bottom-left). 
Also, the impacts as derived from the adjoint-free, 
observation-space approach are shown in the 
bottom-right panel, where the norm is based on the 
inverse observation error covariance matrix. At first 
glance, results from the two approaches look quite 
similar, especially when it comes to the relative 
impact among different observing systems. Looking 
more closely, there differences. The most dramatic 
difference being the less significant impact of the 
radiosonde network suggested by the observation-
space approach versus what is indicated by the 
state-space approach. 

Overall Fractional Impacts for various error measures 

Fractional Impacts for AIRS on AQUA  

Limitations of the observation-space approach

•  Observation-space measures capture only a part of the forecast error – that 

part projecting onto the space of observations – unfortunately, this is only 
part accessible to us.


•  In practice, since observations are bias-corrected, there is still a correlation 
in the observation-space forecast aspect between the forecast and the 
verification (i.e., bias-corrected observations in this case).


•  The observing system must be relatively homogenous at the initial and final 
(verification) times (which is the case in most applications).


Conclusions

•  A fair assessment of the observing system impact on the forecast requires 

careful choice of a forecast error measure.  Statements about specific 
observing systems are largely subject to the choice of norm.


•  Observation impacts derived from the sequence of observation-minus-
forecast residuals provide reliably similar information to that obtained with 
adjoint-based techniques with considerably less restrictions and 
complexities.
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Setting up notation 

True state-space error: 

Perceived state-space:  

Observation-space residual:  

Three error measures considered here: 

Forecast model: 

Suboptimal analysis update: 

Observation-minus-background residual: 

State-space forecast error reduction: 

 The sub-optimality of the analysis update accommodates the weakly non-linear case 
 Here, we’ll be talking about the 1-day forecast error and corresponding error reduction 

Remarks: 

Observation-space forecast error reduction: 

Question 1:  How does the forecast error change with a change of initial condition?  

Answer to Q1:  Treat change of initial condition as infinitesimal and derive approximate formulae expressing 
                         the change in forecast error to various orders of accuracy. For example, a first-order  
                         expression involves:  

Answer to Q2:  Similarly to addressing Q1, treat change of initial condition as infinitesimal and derive 
                         approximate formulae expressing the change in forecast error to various orders of accuracy. 
                         For example, first and second order approximations give:  

Question 2:  How does the forecast error change when the initial condition changes as a consequence  
                      of assimilating observations?  

State-space (Adjoint) Approach  

Insights on State- vs Observation-space Approaches  
representing the expectation operator, Tr(•) stands for the trace operator, and we used the

trace property Tr(ATTB) = Tr(TBAT ) for arbitrary matrices A and B of dimension n×p.

As before, the forecast error change calculated for two consecutive forecasts

< δek > = Tr
{
Tk∆Pf

k

}
, (18)

is used to evaluate the impact of observations, where ∆Pf
k ≡ Pf

k|k−m+1 −Pf
k|k−m is the dif-

ference between the two forecast error covariances corresponding to the two lagged-forecasts.

As proposed above, the impact of observations can also be evaluated by examining

the expectation of the observation-space measure of forecast error defined on the basis of

observation-minus-forecast residuals,

< ey
k|k−m > ≡ < (dk|k−m)TCk(dk|k−m) >

= Tr
{
Ck

[
< (dk|k−m)(dk|k−m)T >

]}

= Tr
{
CkΓk|k−m

}
, (19)

where we introduce the pk × pk residual error covariance matrix

Γk|k−m ≡ < dk|k−mdT
k|k−m >

= HkP
f
k|k−mHk + Rk . (20)

Using this observation-space measure the change in forecast error due to the assimilation of

observations becomes

< δey
k > = Tr

{
CkHk∆Pf

kH
T
k

}
, (21)

for δey
k ≡ δey

k|k−m+1 − δey
k|k−m.
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For the sake of argument, consider the linear suboptimal case. 

Define the forecast error covariance difference:  

Then:  

Useful definitions for what follows:  

After some algebra, the difference between the two forecast error covariances defining

∆Pf
k can be shown to be

∆Pf
k = Mk,k−m+1

(
Pa

k−m+1|k−m+1 −Pf
k−m+1|k−m

)
MT

k|k−m+1 , (22)

with no assumptions made on optimality and model error. Furthermore, recall that at any

time tk, the analysis error covariance can be written as [e.g., see Cohn et al. (1994), eq.

(2.33) there],

Pa
k|k = (I−KkHk)P

f
k|k−1 + ∆Pa

k|k , (23)

where the increment matrix ∆Pa
k|k = ∆KkΓk∆KT

k incorporates all the sub-optimality in

the analysis error covariance, with ∆Kk ≡ K̃k−Kk being the difference between the general

gain matrix K̃k and the optimal Kalman gain matrix Kk,

Kk = Pf
k|k−1H

T
k Γ−1

k . (24)

From (23) it follows that,

Pa
k|k −Pf

k|k−1 = −KkΓkK
T
k + ∆Pa

k|k , (25)

is negative semi-definite in the optimal case, when ∆Pa
k|k

opt
= 0, and therefore so is the

forecast error covariance difference in (22), ∆Pf
k < 0. Applying this result at time tk−m+1

and combining it with (18) and (22) shows that in the optimal case the expected forecast

error change < δek > is guaranteed to be non-positive,

< δek >
opt
= −Tr

{
TkMk,k−m+1Kk−m+1Γk−m+1K

T
k−m+1M

T
k,k−m+1

}

opt
≤ 0 , (26)
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Observation-minus-forecast residual covariance matrix:  

Difference between a general, suboptimal gain, and the Kalman gain:  

Remark: Probabilistic approach has very clear notion of improvement:  
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2. For optimal systems, and a suitable choice of weighting matrix Tk, the state-space  
    expected forecast error reduction produces the same estimate as that obtained in 
    observation-space.  

since the kernel inside the trace operator is positive semi-definite, with equality holding when

Tk = 0. In the optimal case, assimilation of observations is guaranteed to reduce the forecast

errors, in the expected mean sense.

Similarly, since in the optimal case ∆Pf
k < 0, the observation-space expected forecast

error change in (21) is also non-positive,

< δey
k >

opt
= −Tr

{
CkHk−m+1Mk,k−m+1Kk−m+1Γk−m+1K

T
k−m+1M

T
k,k−m+1H

T
k|k−m+1

}

< δey
k >

opt
≤ 0 , (27)

coroborating again that assimilation of observations leads to forecast error reduction, in the

expected mean sense.

A relationship between the two expected forecast error changes < δek > and < δey
k >

can be established by making a particular choice of weighting matrix Tk. Since Tk and Ck

are positive semi-definite matrices let us choose Tk = T̄k to have the following square-root

decomposition:

T1/2
k = T̄1/2

k ≡




C1/2

k Hk

Uk



 , (28)

where the matrix Uk is (n− pk)× n. Substituting this decomposition of Tk into (18),

< δek(Tk = T̄k) > = Tr
{
T̄1/2

k ∆Pf
kT̄

T/2
k

}

= Tr
{
C1/2

k Hk∆Pf
kH

T
k CT/2

k

}
+ Tr

{
Uk∆Pf

kU
T
k

}

= < δey
k > + Tr

{
Uk∆Pf

kU
T
k

}
, (29)

reveals that, in the linear case, the forecast error change calculated using an error measure

defined in state-space can be made identical to that calculated in observation space, (21),
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1.  For optimal systems, the expected forecast error reduction always corresponds  
    to positive impact – assimilation of data always leads to improvement in the  
    expected mean sense.  

where the matrix Uk is (n− pk)× n. Substituting this decomposition of Tk into (19),

< δek(Tk = T̄k) > = Tr
{
T̄1/2

k ∆Pf
kT̄

T/2
k

}

= Tr
{
C1/2

k Hk∆Pf
kH

T
k CT/2

k

}
+ Tr

{
Uk∆Pf

kU
T
k

}

= < δey
k > + Tr

{
Uk∆Pf

kU
T
k

}
, (30)

reveals that, in the linear case, the forecast error change calculated using an error measure

defined in state-space can be made identical to that calculated in observation space, (22),

when Tk = T̄k and Uk = 0. Choosing Tk from a given weighting matrix Ck is viable.

Choosing Ck from a given weighting matrix Tk is, in general, not possible. This is simply

a consequence of the fact that Ck is rank pk, whereas Tk is rank n ≥ pk. In other words,

there is always an unexplained part of the error-change captured in state-space that is absent

when measured in observation-space.

When the weighting matrix Tk is chosen to be T̄k, to allow the state-space error measure

to capture the error measured in observation-space as in (29), optimality implies the former

to lead to errors that are always smaller than (more negative), or equal to the latter, that

is,

< δek(Tk = T̄k) >
opt
≤ < δey

k > , (31)

with equality holding when Uk = 0.

< δek(Tk = HT
k CkHk) >

opt
= < δey

k > , (32)

Tk = T̄k ≡ HT
k CkHk + UT

k Uk (33)
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Since                                                             there is only so much the measure in  
observation-space can capture when compared with that in state-space,  
however, the remaining part is not accessible to us. 
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One can derive the following basic results: 

3.  In general, for suboptimal systems, verifying against a state other than the truth  
     introduces a correlation (covariance) between the observation-minus-background  
     residual and the error in the verification,   

4.  In general, for suboptimal systems, if the verification is chosen to be the  
     underlying analysis all intermediate residual correlations (covariances) participate   

where εv
k ≡ xv

k−xt
k is the error in the verification state. Furthermore, we also show that, when

the verification state is taken to be the analysis, xv
k = xa

k|k, typical in practical applications,

the expression above becomes

< δev=a
k > = < δek >

−2Tr
[
K̃T

k−m+1M
T
k,k−m+1Tk (Mk,k−m+1∆Kk−m+1Γk−m+1

+
m−2∑

j=0

Mk,k−jK̃k−j < dk−j|k−j−1d
T
k−m+1|k−m >

)]
. (33)

This relates the perceived error change, calculated using the analysis for verification, with the

actual error change. To arrive at this result one requires the typical assumption that model

errors be uncorrelated with observation errors, and that forecast errors be uncorrelated with

observation errors for all times larger than the time the forecast begins. Two terms prevent

the perceived error change < δef,v=a
k > to equal the actual error change. One is the first

term in the trace expression, involving the difference ∆Kk−m+1 between the suboptimal

and optimal gains. The other is the second term in the trace expression, involving the

cross-covariances of the various OMF residuals between the analysis time tk−m+2 and the

verification time tk. It is only in the optimal case that both these terms vanish: the first, for

obvious reasons, ∆Kk−m+1 = 0; the second, because the sequence of OMF residuals become

the sequence of innovations, which is white in time, and when all time-cross-covariances

become zero1(Kailath 1968; Daley 1992; see also Anderson and Moore 1979, section 5.3).

Therefore, in the optimal case and in the expected mean sense, verifying against the analysis

is the same as verifying against the truth when it comes to evaluating the forecast error

1Note that the cross-variances, the cross terms calculated for the same time, are not zero, but they also

do not appear inside the summation sign.
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when Tk = T̄k and Uk = 0. Choosing Tk from a given weighting matrix Ck is viable.

Choosing Ck from a given weighting matrix Tk is, in general, not possible. This is simply

a consequence of the fact that Ck is rank pk, whereas Tk is rank n ≥ pk. In other words,

there is always an unexplained part of the error-change captured in state-space that is absent

when measured in observation-space.

When the weighting matrix Tk is chosen to be T̄k, to allow the state-space error measure

to capture the error measured in observation-space as in (28), optimality implies the former

to lead to errors that are always smaller than (more negative), or equal to the latter, that

is,

< δek(Tk = T̄k) >
opt
≤ < δey

k > , (30)

with equality holding when Uk = 0.

Tk = T̄k ≡ HT
k CkHk + UT

k Uk (31)

d. The role of the verification

One can also inquire about the relationship between the change in the expected forecast

error measure defined based on the true state < δek >, and that defined with respect to a

verification state < δev
k >. Sticking with the linear, but not necessarily optimal case, we

show in appendix A that the relationship between these expected errors can be written as

< δev
k > = < δek > −2Tr

[
K̃T

k−m+1M
T
k,k−m+1Tk < εv

kd
T
k−m+1|k−m >

]
, (32)
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5.  Therefore, only in the optimal case,  use of the verification is equivalent to use of 
     the unknown true state to obtain the expected error change of interest.  

Fractional Impacts for AMSU-A Ch 6 on NOAA-18  

Lastly, the figure above shows maps of the fractional impacts of channel 6 for the AMSU-A instrument on 
NOAA-18 as calculated by the various norms and the two approaches. For this particular channel, the 
fractional impacts are not dramatically distinct, even though sometimes their amplitudes are. Only when the 
stratosphere is emphasized in the measure and the adjoint-based approach is used one sees large mixed, 
positive and negative, impacts in the Southern Pacific Ocean; elsewhere the fractional impacts are positive 
or relatively small. 

The role of the verification can be precisely tested in observation-space. Similarly,  
to the result obtained in state-space, when the verification is chosen to be the  
analysis, now projected onto observation space, the following holds: 

The Role of the Verification
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The result with GEOS-5 DAS indicates that in the light of this global measure,  
the system is nearly optimal, and using the analysis as a proxy for the  
observations is reasonable most of the time. Indeed, this provides a test of  
optimality. 

term in the trace expression, involving the difference ∆Kk−m+1 between the suboptimal

and optimal gains. The other is the second term in the trace expression, involving the

cross-covariances of the various OMF residuals between the analysis time tk−m+2 and the

verification time tk. It is only in the optimal case that both these terms vanish: the first, for

obvious reasons, ∆Kk−m+1 = 0; the second, because the sequence of OMF residuals become

the sequence of innovations, which is white in time, and when all time-cross-covariances

become zero1(Kailath 1968; Daley 1992; see also Anderson and Moore 1979, section 5.3).

Therefore, in the optimal case and in the expected mean sense, verifying against the analysis

is the same as verifying against the truth when it comes to evaluating the forecast error

change under consideration.

< δey=a
k > = < δey

k > −2Tr
[
K̃T

k−m+1M
T
k,k−m+1H

T
k CkHk < εv=a

k dT
k−m+1|k−m >

]
(37)

< δey
k > ≈ < δey,1

k >

= < δev,1
k > −2Tr

[
K̃T

k−m+1M
T
k,k−m+1H

T
k CkHk < εo

kd
T
k−m+1|k−m >

]
(38)

TBD: I have seen from calculating < δey > and a similar quantity using the analysis

for verification, that there is strong indication the cross-covariance term mentioned above

is indeed negligible - therefore, I should be able to show that the estimates I get with the

1Note that the cross-variances, the cross terms calculated for the same time, are not zero, but they also

do not appear inside the summation sign.
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The role of the verification can be precisely tested in observation-space. Similarly,  
to the result obtained in state-space, when the verification is chosen to be the 
analysis, now projected onto observation space, the following holds: 

Applying the state-space (adjoint-based) approach, these three panels illustrate the 
consequences of using different norms to derive observation impacts. The typical norm 
employed thus far in related works is based on a linearized total (dry) energy expression 
whose weights largely emphasize the troposphere (top) and neglect the stratosphere.  
Possible alternatives are to use the linearized total (dry) energy norm written in such a way 
that it more evenly weighs the vertical grid (middle), or yet to use a norm that weights the 
forecast aspect according to how the analysis system weights the observations (bottom). 
These three norms amount to distinct assessments of the impact of observations on the 24-
hr forecast. For example, when the troposphere is emphasized the radiosonsode network 
shows as the primary observing system followed closely by AMSU-A; not surprisingly, when 
the norm evenly weighs the vertical AMSU-A becomes the primary contributor to the 24-hr 
forecast error reduction and the radiosonde network plays a secondary role together with 
AIRS; when the weights are made consistent with the analysis weighting of observations 
the radiosonde network becomes again the primary player followed now by Aircraft 
observations which seem to contribute more to error reduction than AMSU-A. The 
conclusion being that observation impacts are largely a function of the definition of forecast 
aspect. 
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The figure on the left shows that, independently of the norm, about 50% 
of the data contribute positively to the 24-hr forecast error reduction. 
The only exception is indicated by the observation-space measure 
(bottom-right panel) when it comes to use of SBUV ozone observations, 
when only 10% of the observations seem to help reduce forecast error. 
Indeed, it is surprising that the state-space measures based on total 
energy claim 50% of ozone observations to contribute to forecast error: 
the energy expression does not even account for errors in ozone. When 
the state-space approach uses the inverse of R to define the error norm, 
the results still seem to say that 50% of the ozone observation 
contribution to forecast error reduction. The conclusion is that this is a 
spurious result coming from high sensitivity of the (adjoint) analysis to 
ozone observations.  

Observation-space Approach  

difference between two consecutive forecasts, started at tk−m and tk−m+1, to construct the

error-change quantity

δey
k ≡ ey

k|k−m+1 − ey
k|k−m . (13)

The impact, or error-change, δey
k is a scalar obtained from the summation over the contri-

butions of all individual observations and can be broken down into individual contributions,

just as the error-changes in (6). The difference between (6) and (13) being that the latter is

not an approximation obtained to allow for the calculation of individual observation impacts.

A relationship between the error-changes (6) and (13) can easily be established. If one

expands the forecast error vectors in (12) following similar arguments to those used to derive

(11), the OMF residual-based forecast error-change (13) can be approximated to first-order

as

δey
k ≈ δey,1

k = −2dT
k−m+1|k−mK̃T

k−m+1|k−mMT
b;k,k−m+1H

T
k|k−mCkdk|k−m , (14)

where, in the last expression, δxk−m+1|k−m = K̃k−m+1|k−mdk−m+1|k−m is the analysis incre-

ment at time tk−m+1, and Hk|k−m is the pk × n Jacobian matrix

Hk|k−m =
∂hk(x)

∂x

∣∣∣∣
x=xb

, (15)

of the nonlinear observation operator hk linearized about the background state xb
k−m+1|k−m.

Higher-order expression can be derived following the procedures in E7 or DT9. This ap-

proximation above is analogous to (6a) except that now the gradient vector ∇xbev
k|k−m =

2Tkε
f,v
k|k−m is replaced with the gradient vector ∇xbey

k|k−m = −2HT
k|k−mCkdk|k−m.
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Calculating the error reduction requires no approximation: 

Following Errico (2007) or Daescu and Todling (2009) one could write down approximations to this error  
reduction to various orders, but they are unnecessary. 

Daescu, D. N., and R. Todling, 2009: Adjoint estimation of the variation in a model functional output  due to assimilation of data. Mon. Wea. Rev., 1705-1716. 
Errico, R. M., 2007: Interpretation of an adjoint-derived observational impact measure. Tellus, 59A, 273-276. 
Langland, R., and N. L. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system.  Tellus, 56A, 189-201. 
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Langland and Baker (2004) introduced an approach to assess the impact of observations on the  
forecasts. In that, a state-space  aspect of the forecast is defined and a  procedure is derived  
that relates  changes in the aspect with changes in the forecast initial conditions due to the  
assimilation of observations, ultimately providing information of the impact of individual  
observations on the forecast.  Though very instructive, this approach has its limitations.  
Typical choices of  forecast aspect are rather arbitrary and generally lead to an incomplete  
assessment of the observing system. Furthermore, the state-space forecast aspect requires 
availability of a verification state that should ideally be uncorrelated with the forecast but in  
practice is not.  And lastly, the approach involves the adjoint operator of the entire data  
assimilation system and as such it is constrained by the validity of this operator.  The present  
work examines an observation-space metric that, for a relatively time-homogeneous observing  
system,  allows for observation impacts to be derived without these limitations. Specifically, using  
observation-minus-forecast residuals leads to an approach with the following advantages: (i) it  
suggests  a rather natural choice of forecast aspect directly related to the analysis system and 
that provides full assessment of the observing system;  (ii) it naturally avoids introducing  
undesirable correlations in the forecast aspect by verifying against the observations; and  (iii) it  
does not involve linearization and use of adjoints, therefore being applicable to any length of  
forecast. The observation-space approach has the additional advantage of being nearly cost-free  
and very simple to implement.  The state- and observation-space approaches might be  
complementary to some degree, but their limitations and complexities are substantially different. 
Illustrations comparing these two approaches are given here using the NASA GEOS-5 data  
assimilation system. 

The Role of the Verification

Although from an global measure perspective the system behaves as if it  
were optimal so that verification can be accomplished by comparing  
against either the observations or the analysis, a closer look indicates this  
cannot be pushed too far.   

Examination of the observation-space impacts when either the observations  
or the analyses are used for verification reveals that use of the analysis has 
the tendency to overestimate the impact of observations on the forecast.  
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