Langland and Baker (2004) introduced an approach to assess the impact of observations on the
forecasts. In that, a state-space aspect of the forecast is defined and a procedure is derived
that relates changes in the aspect with changes in the forecast initial conditions due to the
assimilation of observations, ultimately providing information of the impact of individual
observations on the forecast. Though very instructive, this approach has its limitations.

Typical choices of forecast aspect are rather arbitrary and generally lead to an incomplete
assessment of the observing system. Furthermore, the state-space forecast aspect requires
availability of a verification state that should ideally be uncorrelated with the forecast but in
practice is not. And lastly, the approach involves the adjoint operator of the entire data
assimilation system and as such it is constrained by the validity of this operator. The present
work examines an observation-space metric that, for a relatively time-homogeneous observing
system, allows for observation impacts to be derived without these limitations. Specifically, using
observation-minus-forecast residuals leads to an approach with the following advantages: (i) it
suggests a rather natural choice of forecast aspect directly related to the analysis system and
that provides full assessment of the observing system; (i) it naturally avoids introducin
undesirable correlations in the forecast aspect by verifying against the observations; and (ii) it
does not involve linearization and use of adjoints, therefore being applicable to any length of
forecast. The observation-space approach has the additional advantage of being nearly cost-free
and very simple to implement. The state- and observation-space approaches might be
complementary to some degree, but their limitations and complexities are substantially different.
lllustrations comparing these two approaches are given here using the NASA GEOS-5 data
assimilation system.
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Observation-space forecast error reduction:
Remarks:

>The sub-optimality of the analysis update accommodates the weakly non-linear case
>Here, we'll be talking about the 1-day forecast error and corresponding error reduction

State-space (Adjoint) Approach

Question 1: How does the forecast error change with a change of initial condition?

Answer to Q1: Treat change of initial condition as infinitesimal and derive i formulae
the change in forecast error to various orders of accuracy. For example, a first-order
expression involves:
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Question 2: How does the forecast error change when the initial condition changes as a consequence
of assimilating observations?

Answer to Q2: Similarly to addressing Q1, treat change of initial condition as infinitesimal and derive
For example, first and second order approximations give:
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Observation-space Approach

Calculating the error reduction requires no approximation: ¢’
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Following Errico (2007) or Daescu and Todling (2009) one could write down approximations to this error
reduction to various orders, but they are unnecessary.

approximate formulae expressing the change in forecast error to various orders of accuracy.

Insights on State- vs Observation-space Approaches
For the sake of argument, consider the linear suboptimal case.
Define the forecast error covariance difference:
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Useful definitions for what follows:

Observation-minus-forecast residual covariance matrix:
Tipm = HP[,  HI+ Ry

Remark: Probabilistic approach has very clear notion of improvement:

Difference between a general, suboptimal gain, and the Kalman gain:
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One can derive the following basic results:

1. For optimal systems, the expected forecast error reduction always corresponds
to positive impact — assimilation of data always leads to improvement in the
expected mean sense.
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expected forecast error reduction produces the same estimate as that obtained in
observation-space.
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Since rank(Ty) > rank(Cy) there is only so much the measure in
observation-space can capture when compared with that in state-space,
however, the remaining part is not accessible to us.

3. In general, vor suboptimal systems, verifying against a state other than the truth

. For optimal systems, and a suitable choice of weighting matrix T,, the state-space
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5. Therefore, only in the optimal case. use of the verification is equivalent to use of
the unknown true state to obtain the expected error change of interest.
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The Role of the Verification

The role of the verification can be precisely tested in observation-space. Similarly,
to the result obtained in state-space, when the verification is chosen to be the
analysis, now projected onto observation space, the following holds:
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Observation-Space Forecast Error (x 10°)
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The result with GEOS-5 DAS indicates that in the light of this global measure,
the system is nearly optimal, and using the analysis as a proxy for the
observations is reasonable most of the time. Indeed, this provides a test of

optimality.

Lir T
el mbef? = 5 e RLmetteom [Vt + Veoclomar] Lasty tho = mpactsof channal 6 fo (e AMSU-A Instrumont on
oy the var a For s pa e
Vsoefie = ~2Mu Bl Cidie fractional X aro. Only when the

stratosphere large mixed,
Obs Impact (x 10°) for August 2007-002

large
posiivg and negaiie, mpacts R impacs are positive

or relatively small,

Limitations of the observation-space approach I

Observation-space measures capture only a part of the forecast error — that
part projecting onto the space of observations — unfortunately, this is only
part accessible to us.

In practice. since observations are bias-corrected, there is still a correlation
in the observation-space forecast aspect between the forecast and the
verification (i.e.. bias-corrected observations in this case).
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