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 A Few preliminary words 

 More and more observations, and observation 
types.

 Need for fast and efficient procedures to 
prescribe correct weights (in DA).

 Also need monitoring tools to understand how 
the observations impact the analysis. 
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J min diagnostic

Talagrand (1999), if the 
DA system is consistent :
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Some notations, Tarantola (1988)



J min diagnostic
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Desroziers and Ivanov (2001),
the algorithm.

How to use this diagnostic in order to tune DA prescribed variances ?

→ apply multiplicative coefficients S
b
 and S

o
 to your B and R matrices (or S

oi
 and S

bj
 to 

any independent sub matrix R
i
 and B

j
 you can define) so that the J min criterion is 

fulfilled.

Let                  be the minimizer of                        . 

Supposing the optimality condition is achieved then

xa so , sb J s=
J o
so

J b
sb

E 
J oxa so , sb

so
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sb
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so=
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.

Thus defining the fixed point relation we use to compute 
The tuning coefficients

Therefore



Desroziers and Ivanov,
trace computation.

Problem : How do we compute the Trace(...) term ?
Three randomized methods...

1) Girard (1987)'s method : compute a perturbed analysis xa* with perturbed 
observations y*= y + a noise consistent with R, then it can be shown that

2) Simulated Optimal Innovation method (Chapnik et al, 2006) : take a state 
vector you will consider as your truth, from this « truth » generate a background 
and observations by adding some noise consistent with B and R, then perform a 
(variational) analysis. The system being consistent, the subparts of the cost 
function at the minimum approximate their expectations (if the dataset is big 
enough).

3) Girard revisited in ensemble framework (Desroziers et al, 2009). If you have an 
assimilation ensemble based on observation perturbation, then a Girard-like 
computation can be performed at no significant extra-cost.

 y∗
− yT R−1

Hxa
∗
−Hxa≃TraceHK  .

Moreover all these methods give access to DFS computation...



Desroziers and Ivanov,
trace computation.

Upper air 
observations DFS 
computed by two 

methods on 
02/04/2004 at 00Z.



Desroziers and Ivanov,
properties of the method.

The method can be shown to achieve a maximum likelihood tuning of the tuning 
coefficients : i.e. considering a gaussian pdf for the innovation (                   ) with 
covariance                              , The coefficients provided by the method maximize

This has some consequences :

- Need of a large observation set (ok for a global tuning of a satellite sounder channel, 
not for RS at a certain level for a certain parameter in a limited geographical area); 

- B and R must be very different in  terms of correlation length scale, both for the actual 
covariances and the prescribed covariance model;

- so and sb can be tuned independently.

Independently of ML equivalence : the algorithm converges very quickly (good estimate 
at the first step).

d= y−Hx b
D=so RsbHBH

T

f d∣so , sb=
1

 2
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2
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Desroziers and Ivanov,
properties of the method
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o
 precision increases with p.

Experimental framework



Desroziers and Ivanov,
properties of the method

If obs. errors have spatial correlation...
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Decorrelation of the analysis error and 
the innovation.

The innovation vector and the analysis error should not be correlated in an optimal 
system. E a d

T =0

Already used by Daley (1992) under a slightly different form : if the system is optimal 
then the innovations computed at different steps of the Kalman filter are decorrelated, 
departure from optimality is measured by a “lagged innovation covariance”.

Talagrand (2003) suggested to assess the optimality of a DA system using this criterion, 
sampling the analysis error by its difference with unassimilated, independent verifying 
observations.

E  yv−H v xa d
T
=E  v−H v ad

T
=0

Using an equivalent  “lagged analysis increment covariance”, Chapnik (2006) produced 
sub-optimality maps (see Gerald Desroziers's presentation).



Desroziers et al. (2005) algorithm

Based on the fact that the innovation vector and the analysis error should 
not be correlated in an optimal system.

E ad
T =0
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T
=o d

T
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T
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T
=E a d

T
=BH T }

Dropping the « E » term (with large enough an observation set), only considering these 
relations in observation space and considering only the trace of the matrices lead to the 
following relations :

{
1
p
 y−Hx a

T d= o
2

1
p
H  xa

T d=b
2 in obs. space }



Desroziers et al. (2005)
Properties of the method

Unlike the first method no formal equivalence was found with another well 
documented method.
But both methods perform very much alike

For this method too
-need of a large number of observations
- All spatial correlation terms should be in B while there should be none in R.
-The result after a first iteration is a very good guess of the final result...

Moreover, performed over large enough a number of observations the results for 
both methods are strikingly consistent...



Desroziers et al.(2005)

Both methods provide similar (almost identical) results
but no formal proof of this (yet).

 σ
ο  

profiles for RS 

temperature obs. From 
Chabot (2008)



Tuning of inter channel covariances

Using the algorithm, inter channel covariances 
terms can be computed using :

1
p
 y−Hxai

T d j=C ij .

true / diag.  true / diag.  true / diag.
obs. 1  1.00 / 1.00  1.00 / 1.01  0.10 / 0.10
obs. 2  1.00 / 1.01  4.00 / 3.73  ­0.20 / ­0.18
obs. 3  0.10 / 0.10  ­0.20 / ­0.18  0.25 / 0.25

True and diagnosed obs. error covariances in a simple « toy » experimental set,
Desroziers et al. (2005)

Or to make it more symmetric:

1
2p  y−Hx aiT d jd iT  y−Hxa j =C ij .



Computing σ
b
.

 σ
b 
profile, sampled by RS temperature obs. From Chabot (2008).



Conclusions, future plans.

 Diagnostics of optimality have been a source of inspiration : 
2 algorithms to tune error statistics, Fast computations of 
observation impact, almost costless in a perturbed 
observation ensemble context.

 Still to be seen, how do we deal with spatially correlated 
observation errors ?

 Operational use of the tuned statistics (need to remove 
bias first!).

 Assess and/or calibrate ensemble B.

 Evaluation of model error...


