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Outline
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– 4D-Var
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Review on influence matrix and self-sensitivity
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 The analysis combines background
and observations based on weighting
matrix K:

 The analysis sensitivity with respect
to the observations:

 The analysis sensitivity with respect
to the background:

*     is called the influence matrix, which reflects the sensitivity of the analysis
to the observations.     is the sensitivity of the analysis to the background;

* Diagonal values of      are self-sensitivity, indicating the sensitivity of

* Sensitivities to obs and to bkg are complementary
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Self-sensitivity and the analysis value change

 The change in the ith analysis value by
leaving out the ith observation is given by:

 The difference between the actual
observation and the predicted observation
based on “buddy” observations is given by:

Note:         is the analysis value at the ith point after leaving out the ith
observation during data assimilation. It is the best possible “buddy check”!

* Both quantities can be calculated from self-sensitivity without knowing

* An abnormally large difference between the actual obs and the predicted
obs may indicate problems with the quality of that observation.
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Review of the applications of self-sensitivity

Cardinali et al. (2004)

Note: Information content: trace of self-sensitivity

* Self-sensitivity is a quantitative measure of the observation influence on analysis;

* The information content is qualitative consistent with the results from other studies.

* Information content is also used in channel selection in multi-thousand channel satellites
(i.e., Rabier et al., 2002).

Information content of each major type observations over the
total information content of all observations
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Self-sensitivity calculation in Variational approach

 Influence matrix So is a function of Pa and R.

 In Variational approach, Pa is not explicitly calculated.

 Pa is the inverse of the matrix of the second derivatives of the cost
function J (Hessian) :

 so

          is approximated with a truncated eigenvalue decomposition.

P
a
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Cardinali et al. (2004)

* The truncated eigenvalue decomposition makes      larger than 1 in
some cases, whereas it should be less than or equal than 1.

* The analysis value change by leaving out the ith observation cannot be
calculated from self-sensitivity because of this approximation.
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Calculation of self-sensitivity in EnKFs
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*  In EnKFs,      and      require no approximation, and little computational time.

*       is always within the theoretical range (0,1).
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Influence matrix valid in any data
assimilation:

 
In EnKFs, the calculation of
influence matrix requires no
approximation:

When the observation errors have
no correlation, self-sensitivity
and cross-sensitivity    :
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Validation of the self-sensitivity calculation in EnKFs

 Lorenz-40 variable model (Lorenz and Emanuel, 1996) with model error
(F=8 for the nature run, and F=7.6 for the forecast);

  Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., 2007);

 Observe every point;

 Observations are the nature run with random Gaussian error of 0.2.

Verification methods:

1. Compare                 (based on data-denial experiments) with

2. Compare                   (calculated by leaving out each obs in turn) with
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Analysis value change by leaving out one observation & that based on

* Both quantities are instantaneous values: the two quantities are the same;

* The self-sensitivity calculation method we proposed is correct;

* The impact of the ith observation on the ith analysis value can be calculated
without carrying out data-denial experiment (redoing the analysis w/o the ob).
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Note: m is the total number of observations.

* The two calculation methods give the same results;

* Cross validation can be easily calculated from self-sensitivity.

Cross validation based on self-sensitivity
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The relationship between information content & the
observation impact from data denial experiment

Data denial experiments:

Control run: all dynamical variables are observed in both red + and black dots.

Sensitivity experiment: winds not observed in locations with red +

• Compare information content (the trace of analysis sensitivity) of zonal wind at
locations with red + from control run to the RMS error difference between sensitivity
experiment and control experiment.

 Simplified PrimitivE Equation DYnamics model
(SPEEDY) (Molteni, 2003, adapted by Miyoshi,
2005)

 A global model with fast computation
speed.

 96 grid points zonally, and 48 grid points
meridionally, and 7 vertical level
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Information content (control, shaded)  vs.
RMSE difference (data-denial experiments, contour)

∗ Information content qualitatively reflects the actual observation impact from data-
denial experiments.

RMSE (u, sensitivity-control) &
info-content (u)
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Observation quality control

Experimental design: the observation error standard deviation at the 11th point is 4
times larger than the others.

* The difference between the predicted observation       and the actual obs     is
larger when the ith observation has larger error (11th point).

* Does not need much computational time.
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6-hour forecast error                          & error of
predicted obs based on buddy analysis

 

         Difference between yi
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the implications for observation quality control
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* 6-hour forecast error is similar to the error of the predicted obs based on the buddy obs,
but the predicated obs is more accurate.

* Both the 6-hour forecast error and the error of the predicted obs have smaller error than
the bad observation at the 11th point (stdv=0.80);

* The observation quality control based on 6-hour forecast and the predicted obs will give
similar results.
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The impact of the ith observation on the forecast at
the ith observation point
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The approximation comes from two aspects:

1) Nonlinearity;

2) The impact of the change in the analysis of the points other than the ith  point 

 (due to deletion of the ith  observation) on the ith  forecast.  
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*             can be approximately calculated without carrying out data denial experiment!yi
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The difference between the forecasts (at the ith point) initiated from the analyses made
with and without the ith observation:
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    forecast perturbations

Forecast change by leaving out one observation & that based on Siio

Note: the plot is instantaneous values at one analysis cycle; the forecast length is
24-hr.

* Forecast value change calculated from self-sensitivity and forecast perturbations
is very close to the actual forecast value change from data denial exp.
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Observation impact on the forecast accuracy

 

The forecast error changes by leaving out the ith  observation:
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When the observations improves the forecast accuracy, 

the cost function is negative;

When the observations deteriorates the forecast, 

the cost function is positive. 
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Observation impact based on self-sensitivity & the observation
impact from adjoint and ensemble sensitivity method
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(Langland and Baker, 2004; Liu and Kalnay, 2008)

The adjoint and ensemble sensitivity method:

* The cost function reflects the impact of all the
observations assimilated at 00hr on the forecast error
difference (model space) at time t.

* The cost function is rewritten as function of the
observations assimilated at 00hr.
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Observation impact based on self-sensitivity & the observation
impact from adjoint and ensemble sensitivity method
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(Langland and Baker, 2004; Liu and Kalnay, 2008)

-6hr 00hr t  analysis
Total Obs.

(Total-1) Obs.

The adjoint and ensemble sensitivity method:

* The cost function reflects the impact of all the
observations assimilated at 00hr on the forecast
error difference (model space) at time t.

* The cost function is rewritten as function of the
observations assimilated at 00hr.

* The cost function reflects the impact of the ith
observation assimilated at 00hr on the forecast error
difference (observation space) at time t.

* There is no need to rewrite the cost function.

The observation impact based on self-sensitivity:
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Detection of bad quality observation

 

Blue: time average of the cost function Ji  with yi
f (!i)   calculated from 

self-sensitivity, ensemble forecasts.

Red :  time average of the cost function Ji  with yi
f (!i)  calculated by

 leaving out the ith  observation during data assimilation. 

Note: the observation at the 11th point has 4 times larger random error than the others

* Both cost function give similar results, and both detect the observation with bad quality.
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The impact of the accuracy of the verification state
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The difference between black line and the blue line is the verification state. Both
are calculated from self-sensitivity and forecast ensemble forecasts.

*  The cost function detects that the 11th observation makes the forecast worse.

*  Different verification states make a big difference in the signal.
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Observation impact on the forecast
accuracy in a global model

 Numerical model: Simplified PrimitivE Equation DYnamics model
(SPEEDY) (Molteni, 2003, adapted by Miyoshi, 2005)

 Local Ensemble Transform Kalman Filter (Hunt et al., 2007)

 OSSE experiments (perfect model);

 Observation error is about 30% of the natural variability of the model.

 Observed every vertical level in the rawinsonde observation location,
except specific humidity (observed the lowest 5 vertical levels)
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The zonal wind observation impact on the
forecast accuracy
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,i : longitude; j : latitude

Averaged over time, and all the vertical levels (unit: m2 /s2)

Forecast length=12hr Forecast length=24hr

Note: negative: the observation improves the forecast; positive: the observation makes the
forecast worse.

* A few points in the data dense area make the forecast worse just by chance.

* In the data sparse area, the obs impact on the 24hr forecast is larger than that on the
12hr forecast.
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Does the observation show different impact in
data dense area?
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,i : longitude; j : latitude

Averaged over time, and all the vertical levels (unit: m2 /s2)

Forecast length=12hr Forecast length=24hr

Note: negative: the observation improves the forecast; positive: the observation makes the
forecast worse.

* A few points in the data dense area make the forecast worse.

* In the data sparse area, the obs impact on the 24hr forecast is larger than that on the
12hr forecast.
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Zonal wind observation impact in the
data dense area

 

Ji, j = 40 ! [(yi, j
f
" yi, j

a
)
2
" (yi, j

f ("i)
" yi, j

a
)
2
],i : longitude; j : latitude

Averaged over time, and all the vertical levels (unit: m2 /s2)
Forecast length=12hr Forecast length=24hr

* Observation impact shows difference in data dense area. The impact is much smaller
than the observation in data sparse area.

* Observation impact on the 24hr forecast is larger than that on 12hr forecast.



32

Specific humidity observation impact
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Averaged over time, and all the vertical levels (unit:1e7kg2 /kg2)
Forecast length=12hr Forecast length=24hr

* Specific humidity involved in highly nonlinear process; specific humidity improves
forecast in most places.

* Larger impact in data sparse areas.
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Conclusions and discussion

 A new method is proposed to calculate influence matrix and self-
sensitivity in an EnKF;

 Influence matrix and self-sensitivity can be easily calculated in EnKFs:
applying the observation operator on the ensemble analyses and
carrying out scalar products;

 With no approximation needed in the calculation of self-sensitivity, the
self-sensitivity remains within the theoretical range (0,1);

 The analysis value change by leaving out the ith observation can be
inexpensively calculated from self-sensitivity;

 Cross-validation can be easily calculated based on self-sensitivity
without carrying out data-denial experiments.

 Information content qualitatively reflects the observation impact from
data-denial experiments.

 Self-sensitivity could be used in observation quality control and the
observation impact on the forecast accuracy.


