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Ensemble Kalman Filter:Ensemble Kalman Filter:
status and new ideasstatus and new ideas

• EnKF and 4D-Var are in a friendly competition:
• Jeff Whitaker results: EnKF better than GSI (3D-Var)
• Canada (Buehner): 4D-Var & EnKF the same in the
NH and EnKF is better in the SH. Hybrid best.
• JMA (Miyoshi): at JMA, EnKF faster than 4D-Var,
better in tropics and NH, worse in SH due to model bias.
• EnKF needs no adjoint model, priors, it adapts to
changes in obs, it can even estimate ob errors.
• We “plagiarize” ideas and methods developed for 4D-
Var and adapt them to the LETKF (Hunt et al., 2007)
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Whitaker: Comparison of T190, 64 members EnKF with
T382 operational GSI, same observations (JCSDA, 2009)
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There are several types of EnKFThere are several types of EnKF

1.1. Perturbed obs (e.g., Houtekamer and Mitchell)Perturbed obs (e.g., Houtekamer and Mitchell)
2.2. Square root filters (e.g., Whitaker and Hamill)Square root filters (e.g., Whitaker and Hamill)
Most filters get their speed from assimilating one

observation at a time
The LETKF (Hunt 2005) assimilates all obs

simultaneously and get its speed from local
processing of each grid point

Because it is a Transform Square root filter, the LETKF
analysis ensemble is explicitly expressed as a linear
combination of the forecast ensemble

This has a number of nice properties, so here we will
focus on the LETKF
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Diagnostic tools that improveDiagnostic tools that improve
LETKF/EnKFLETKF/EnKF

We adapted ideas that were inspired by 4D-VarWe adapted ideas that were inspired by 4D-Var:
 No-cost smoother (Kalnay et al, Tellus 2007)
  “Outer loop”, nonlinearities and long windows (Yang and Kalnay)
 Accelerating the spin-up (Kalnay and Yang, 2008)
 Forecast sensitivity to observations (Liu and Kalnay, QJ, 2008)
 Analysis sensitivity to observations and cross-validation (Liu et al., QJ,
2009)
 Coarse analysis resolution without degradation (Yang et al., QJ, 2009)
 Low-dimensional model bias correction (Li et al., MWR, 2009)
 Simultaneous estimation of optimal inflation and observation errors (Li et
al., QJ, 2009).
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Local Ensemble Transform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)

• Model independent
(black box)
• Obs. assimilated
simultaneously at each
grid point
• 100% parallel: fast
• No adjoint needed
• 4D LETKF extension

(Start with initial ensemble)

LETKFObservation
operator

Model

ensemble  analyses

ensemble forecasts

ensemble
“observations”

Observations
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Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

Localization based on observations
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Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

Localization based on observations

The LETKF algorithm can be described in a single slide!
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Local Ensemble Transform Kalman Filter (Local Ensemble Transform Kalman Filter (LETKFLETKF))

Forecast step:
Analysis step: construct

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

Analysis mean in ensemble space:
and add to     to get the analysis ensemble in ensemble space

The new ensemble analyses in model space are the columns of
                 . Gathering the grid point analyses forms the new

global analyses. Note that the the output of the LETKF are analysis
weights         and perturbation analysis matrices of weights        . These
weights multiply the ensemble forecasts.
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The 4D-LETKF produces an analysis in terms of
weights of the ensemble forecast members at the
analysis time tn, giving the trajectory that best fits all
the observations in the assimilation window.

analysis time weights
A linear comb. of trajectories is ~a trajectory. If it is close
to the truth at the end it should be close to the truth
throughout the trajectory (neglecting model errors).
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No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
Outer loop (like in 4D-Var)
“Running in place” (faster spin-up)
Use of future data in reanalysis
Ability to use longer windows
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No-cost LETKF smoother
tested on a QG model: It works!

“Smoother” reanalysis

LETKF Analysis
xn
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This very simple smoother allows us to go back
and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis
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Nonlinearities and Nonlinearities and ““outer loopouter loop””

• The main disadvantage of EnKF is that it cannot handle
nonlinear (non-Gaussian) perturbations and therefore needs
short assimilation windows.

•• It doesnIt doesn’’t have the t have the outer loopouter loop  so important in 3D-Var andso important in 3D-Var and
4D-Var (DaSilva, pers. 4D-Var (DaSilva, pers. commcomm. 2006). 2006)

Lorenz -3 variable model (Kalnay et al. 2007a Tellus), RMS
analysis error

4D-Var  LETKF
Window=8 steps 0.31    0.30 (linear window)
Window=25 steps 0.53    0.66 (nonlinear window)

Long windows + Pires et al. => 4D-Var clearly wins!
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““Outer loopOuter loop”” in 4D-Var in 4D-Var

 



15

Nonlinearities,Nonlinearities,  ““Outer LoopOuter Loop”” and  and ““Running in PlaceRunning in Place””

Outer loop: similar to 4D-Var: use the final weights to
correct only the mean initial analysis, keeping the initial
perturbations. Repeat the analysis once or twice. It
centers the ensemble on a more accurate nonlinear
solution.

Lorenz -3 variable model RMS analysis error

4D-Var   LETKF LETKF LETKF
        +outer loop       +RIP

Window=8 steps 0.31     0.30 0.27  0.27
Window=25 steps 0.53     0.66 0.48  0.39

“Running in place” smoothes both the analysis and the
analysis error covariance and iterates a few times…
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Estimation of forecast sensitivity toEstimation of forecast sensitivity to
observations observations without adjointwithout adjoint in an in an

ensemble Kalman filterensemble Kalman filter

Junjie Liu and Eugenia Kalnay
QJRMS October 2008

Inspired by Langland and Baker (2004)
and Zhu and Gelaro (2008)

Ideal for diagnosing NCEP “5-day skill
dropouts” because it remains valid for

nonlinear perturbations
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Motivation: Langland and Baker (2004)

 The adjoint method proposed by Langland and Baker (2004) and Zhu and
Gelaro (2007) quantifies the reduction in forecast error for each individual
observation source

 The adjoint method detects the observations which make the forecast worse.

 The adjoint method requires adjoint model which is difficult to get.

AIRS shortwave 4.180 µm

AIRS shortwave 4.474 µm

AIRS longwave 14-13 µm

AMSU/A
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 Schematic of the observation impact on the reduction of
forecast error

The only difference between         and            is the assimilation of observations at 00hr.

 Observation impact on the reduction of forecast error:

(Adapted from Langland
and Baker, 2004)
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Test ability to detect the poor quality observation on
the Lorenz 40 variable model

 Like adjoint method, ensemble sensitivity method can detect the observation
poor quality (11th observation location)

 The ensemble sensitivity method has a stronger signal when the observation has
negative impact on the forecast.

Observation impact from LB (red) and from ensemble sensitivity method (green)

Larger random error Biased observation case
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Test ability to detect poor quality observation for
different forecast lengths

 After 2-days the
adjoint has the wrong
sensitivity sign!

 The ensemble
sensitivity method has
a strong signal even
after forecast error has
saturated!

Larger random error Biased observation case

 

 

2 days

5 days

 

20 days
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How can we possibly detect bad observations even
after all skill is lost??? (Liu and Kalnay, 2009)

 After 20-days there is no
forecast skill but the
ensemble sensitivity still
detects the wrong
observation.

 The ensemble sensitivity
is based on the assumption
that the analysis weights
can be used in the
forecasts. This is accurate
even after forecast error
has saturated (triangles).

 As a result we can
identify a bad observation
even after forecast skill is
lost.

 

20 days

Mean Square Error of the -6hr weighted forecasts (diamonds),
MSE of the 0hr ensemble mean (circles) and MS Difference
between ensemble mean and weighted forecasts (triangles).

Error made by using the -6hr
weights in the forecasts



23

Analysis sensitivity to observationsAnalysis sensitivity to observations
and and exact Cross-Validationexact Cross-Validation in an EnKF in an EnKF

Junjie Liu, E Kalnay, T Miyoshi and C Cardinali
QJRMS 2009

Inspired in Cardinali et al., 2004
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Observation quality control using cross-validation

Experimental design: the observation error standard deviation at the 11th point is 4
times larger than the others.

* The difference between the predicted observation       and the actual obs     is
larger when the ith observation has larger error (11th point).

* Does not need much computational time.
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Observation impact based on self-sensitivity & the observation
impact from adjoint and ensemble sensitivity method

-6hr 00hr t  analysis

Obs.
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-6hr 00hr t  analysis
Total Obs.

(Total-1) Obs.

The adjoint and ensemble sensitivity method:

* The cost function reflects the impact of all the
observations assimilated at 00hr on the forecast
error difference (model space) at time t.

* The cost function is rewritten as function of the
observations assimilated at 00hr.

* The cost function reflects the impact of the ith
observation assimilated at 00hr on the forecast error
difference (observation space) at time t.

* There is no need to rewrite the cost function.

The observation impact based on self-sensitivity:
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• In EnKF the analysis is a weighted average of the forecast ensemble
• We performed experiments with a QG model interpolating weights

compared to analysis increments.
• Coarse grids of 11%, 4% and 2% interpolated analysis points.
• Weight fields vary on large scales: they interpolate very well

 

1/(3x3)=11% analysis grid

Coarse analysis with interpolated weights
Yang et al (2008)
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Weight interpolation versus Increment interpolation

With increment interpolation, the analysis degrades quickly…
With weight interpolation, there is almost no degradation!
LETKF maintains balance and conservation properties
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Impact of coarse analysis on accuracy

With increment interpolation, the analysis degrades
With weight interpolation, there is no degradation,

the analysis is actually slightly better!
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Model error: comparison ofModel error: comparison of  methodsmethods
to correct model bias and inflationto correct model bias and inflation

Hong Li, Chris Danforth, Takemasa Miyoshi,
and Eugenia Kalnay, MWR (2009)

Inspired by the work of Dick Dee, but with model
errors estimated in model space, not in obs space
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Model error: If we assume a perfect model in EnKF,Model error: If we assume a perfect model in EnKF,
we underestimate the analysis errors (Li, 2007)we underestimate the analysis errors (Li, 2007)

imperfect modelimperfect model
(obs from NCEP- NCAR(obs from NCEP- NCAR
Reanalysis NNR)Reanalysis NNR)

perfect SPEEDY modelperfect SPEEDY model
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— Why is EnKF vulnerable to model errors ?

 In the theory of Extended Kalman
filter, forecast error is represented by
the growth of errors in IC and the
model errors.

 However, in ensemble Kalman filter,
error estimated by the ensemble
spread can only represent the first
type of errors.
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imperfect model
perfect model

Low Dimensional Method to correct the bias (Danforth et al, 2007)
combined with additive inflation

We compared several methods to handle
bias and random model errors
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Simultaneous estimation of EnKF inflation and
obs errors in the presence of model errors

Hong Li, Miyoshi and Kalnay (QJ, 2009)

 Any data assimilation scheme requires accurate statistics for the
observation and background errors (usually tuned or from gut feeling).
 EnKF needs inflation of the background error covariance: tuning is
expensive
 Wang and Bishop (2003) and Miyoshi (2005) proposed a technique to
estimate the covariance inflation parameter online. It works well if ob errors
are accurate.
 We introduce a method to simultaneously estimate ob errors and
inflation.

Inspired by Houtekamer et al. (2001) and
Desroziers et al. (2005)
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Diagnosis of observation error statistics
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Diagnosis of observation error statistics

Here we use a simple KF to estimate both     and       online.!
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SPEEDY model: online estimated observational
errors, each variable started with 2 not 1.

The original wrongly specified R quickly
converges to the correct value of R (in about 5-10
days)
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Estimation of the inflation

Using a perfect R and estimating      adaptively
Using an initially wrong R and       but estimating them adaptively!

 

Estimated Inflation

!

After R converges, the time dependent inflation factors are quite similar 
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Tests with LETKF with imperfect L40 model:
added random errors to the model

 

Error 
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4 0.25 0.36 0.27 0.36 0.39 0.38 0.93 

20 0.45   0.47 0.41 0.47 0.38 0.48 1.02 

100 1.00 0.64 0.87 0.64 0.80 0.64 1.05 

 

The method works quite well even
with very large random errors!
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Tests with LETKF with imperfect L40 model:
added biases to the model

The method works well for  low biases, but
less well for large biases: Model bias needs

to be accounted by a separate bias correction

Error 
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1 0.35  0.40 0.31 0.42 0.35 0.41 0.96 

4 1.00  0.59 0.78 0.61 0.77 0.61 1.01 

7 1.50 0.68 1.11 0.71 0.81 0.80 1.36 
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SummarySummary

• EnKF and 4D-Var give similar results in Canada and in JMA,
except for model bias. (Buehner et al, Miyoshi et al)

• EnKF is better than GSI with half resolution model, 64
members. Computationally competitive (Whitaker)

• Many ideas to further improve EnKF were inspired in 4D-Var:
– No-cost smoothing and “running in place”
– A simple outer loop to deal with nonlinearities
– Adjoint forecast sensitivity without adjoint model
– Analysis sensitivity and exact cross-validation
– Coarse resolution analysis without degradation
– Correction of model bias combined with additive inflation gives the

best results
– Can estimate simultaneously optimal inflation and obs. errors



41

Extra Slides on Low Dim Method
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• Generate a long time series of model forecast minus reanalysis
from the training period

2.3 Low-dim method (Danforth et al, 2007: Estimating and correcting global
weather model error. Mon. Wea. Rev, J. Atmos. Sci., 2007)
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Include Bias, Diurnal and State-Dependent model errors:

Having a large number of estimated errors   allows to
estimate the global model error beyond the bias
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SPEEDY 6 hr model errors against NNR (diurnal cycle)

1987 Jan 1~ Feb 15

Error anomalies

•  For temperature at lower-levels, in addition
to the time-independent bias, SPEEDY has
diurnal cycle errors because it lacks diurnal
radiation forcing

Leading EOFs for 925 mb TEMP
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