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Ensemble Kalman Filter:
status and new ideas

* EnKF and 4D-Var are in a friendly competition:
 Jeff Whitaker results: EnKF better than GSI (3D-Var)

« Canada (Buehner): 4D-Var & EnKF the same in the
NH and EnKF is better in the SH. Hybrid best.

* JMA (Miyoshi): at JMA, EnKF faster than 4D-Var,
better in tropics and NH, worse in SH due to model bias.

* ENKF needs no adjoint model, priors, it adapts to
changes in obs, it can even estimate ob errors.

« We "plagiarize” ideas and methods developed for 4D-
Var and adapt them to the LETKF (Hunt et al., 2007)
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Whitaker: Comparison of T190, 64 members EnKF with
T382 operational GSI, same observations (JCSDA, 2009)

Wind Speed Differences: Observed Minus Forecast
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Vertical profiles of the RMS difference between six hour forecasts and in-situ observations for the period 2007120700 —
2008010718. Observations are aggregated in 100 hPa layers. The red curve is for the ensemble mean of the experimental 64-
member T190 EnKF system, and the blue curve is for the T382 GSl-based GDAS system operational in December 2007.



There are several types of EnKF

1. Perturbed obs (e.g., Houtekamer and Mitchell)
2. Square root filters (e.g., Whitaker and Hamill)

Most filters get their speed from assimilating one
observation at a time

The LETKF (Hunt 2005) assimilates all obs
simultaneously and get its speed from local
processing of each grid point

Because it is a Transform Square root filter, the LETKF

analysis ensemble is explicitly expressed as a linear
combination of the forecast ensemble

This has a number of nice properties, so here we wiI4I
focus on the LETKF



Diagnostic tools that improve
LETKF/EnKF

We adapted ideas that were inspired by 4D-Var:

v No-cost smoother (Kalnay et al, Tellus 2007)

v' “Outer loop”, nonlinearities and long windows (Yang and Kalnay)
v" Accelerating the spin-up (Kalnay and Yang, 2008)

v Forecast sensitivity to observations (Liu and Kalnay, QJ, 2008)

v' Analysis sensitivity to observations and cross-validation (Liu et al., QJ,
2009)

v’ Coarse analysis resolution without degradation (Yang et al., QJ, 2009)
v Low-dimensional model bias correction (Li et al., MWR, 2009)

v Simultaneous estimation of optimal inflation and observation errors (Li et
al., QJ, 2009).



ILocal Ensemble Transtform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)

(Start with initial ensemble)

Observations

l

Observation | ensemble

operator “observations

I ensemble [analyses

ensemble forecasts

Model

* Model independent
(black box)

* Obs. assimilated
simultaneously at each
grid point

* 100% parallel: fast

* No adjoint needed

* 4D LETKF extension



Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot




Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

The LETKF algorithm can be described in a single slide!
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Local Ensemble Transform Kalman Filter (LETKF)

Globally:
b a
Forecaststep: X, =M, (Xn—l,k
Analysis step: construct b _ | 0 _ %P b _gb .
y P X —|:X1—X l...Ix, —X ],

y =HX) Y, =]y =¥ 1.1y, =" |

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

P =[(K-DI+Y"RY | ; W =[(K - )P']"”

Analysis mean in ensemble space: W' =P‘Y”'R7'(y° -y")
and add to W¢“ to get the analysis ensemble in ensemble space

The new ensemble analyses in model space are the columns of

X! = XiW“ +X” . Gathering the grid point analyses forms the new
global analyses. Note that the the output of the LETKF are analysis
weights W* and perturbation analysis matrices of weights W¢. These
weights multiply the ensemble forecasts. 9



A linear comb. of trajectories is ~a trajectory. If it is close o |
to the truth at the end it should be close to the truth analysis time weights
throughout the trajectory (neglecting model errors). l

4D-LETKF

time t

The 4D-LETKF produces an analysis in terms of
weights of the ensemble forecast members at the
analysis time t_, giving the trajectory that best fits all

the observations in the assimilation window.
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No-cost LETKF smoother (x): apply at t_, the same
weights found optimal at t.. It works for 3D- or 4D-LETKF

4D-LETKF

tn—l tlme tn

The no-cost smoother makes possible:

Outer loop (like in 4D-Var)
“Running in place” (faster spin-up)
Use of future data in reanalysis

Ability to use longer windows »



No-cost LETKF smoother
tested on a QG model: It works!

Analysis error of potential vorticity

LETKEF analysis _ < X
. Xa =X + Wa 0016
at time n n n non LETKF Analysis

Smoother analysis _, @
od - I ¢
at time n-1 X1 =X F Xn—lw

n

“Smoother” reanalysis

RMS Error

This very simple smoother allows us to go back

and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis?



Nonlinearities and “outer loop”

The main disadvantage of EnKF is that it cannot handle
nonlinear (non-Gaussian) perturbations and therefore needs
short assimilation windows.

It doesn’t have the outer loop so important in 3D-Var and
4D-Var (DaSilva, pers. comm. 2006)

Lorenz -3 variable model (Kalnay et al. 2007a Tellus), RMS
analysis error

4D-Var LETKF
Window=8 steps  0.31 0.30 (linear window)
Window=25 steps 0.53 0.66 (nonlinear window)

Long windows + Pires et al. => 4D-Var clearly wins! 13



“Outer loop” in 4D-Var

Incremental 4D-Var

Ty =y

v

x; — — — — | High resolution nonlinear trajectory
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]
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3

o
g‘ + Low resolution linear model R
e
E Low resolution adjoint model v

: Iterative minimisation algorithm

Tip1=x;+ 571 (8x;)

#, ——— —>  High resoluticn nonlinear forecast

Incremental 4D-Var - 7 _cECMWF
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Nonlinearities, “Outer Loop™ and “Running in Place”

Outer loop: similar to 4D-Var: use the final weights to
correct only the mean initial analysis, keeping the initial
perturbations. Repeat the analysis once or twice. It
centers the ensemble on a more accurate nonlinear

solution.

Lorenz -3 variable model RMS analysis error

4D-Var LETKF LETKF LETKF

+outer loop +RIP

Window=8 steps  0.31 0.30 0.27 0.27
Window=25 steps 0.53 0.66 0.48 0.39

“Running in place” smoothes both the analysis and the

analysis error covariance and iterates a few times... 1



Estimation of forecast sensitivity to
observations without adjoint in an
ensemble Kalman filter

Junjie Liu and Eugenia Kalnay
QJRMS October 2008

Inspired by Langland and Baker (2004)
and Zhu and Gelaro (2008)

Ideal for diagnosing NCEP “5-day skill
dropouts” because it remains valid for

nonlinear perturbations
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Motivation: Langland and Baker (2004)

AQUA sensitivity specified by channel number: Aug
AIRS shortwave 4.180 um

AIRS shortwave 4.474 um

AIRS longwave 14-13 um

AMSU/A

" A 1 L a A A n L A | "
-0.4 -0.2 0.0 0.2

Beneficial Non-beneficial

» The adjoint method proposed by Langland and Baker (2004) and Zhu and
Gelaro (2007) quantifies the reduction in forecast error for each individual
observation source

» The adjoint method detects the observations which make the forecast worse.

» The adjoint method requires adjoint model which is difficult to get. 17



Schematic of the observation impact on the reduction of
forecast error

€6 _ _
e, e, =X}, — X,
Adapted from Langland
BS. (Adap g

and Baker, 2004)

-6hr  00hr analysis t

The only difference between €, ,and €, _gis the assimilation of observations at 00hr.

1

T T
» Observation impact on the reduction of forecast error: J = —(eﬂoeﬂo — et,_6et,_6)
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The ensemble forecast sensitivity method

1 T <b
Euclidian cost function: J = E(etloeﬂo — et|_6et|_6) Vy = yg — h(X0|_6
| | dJ
Cost function as function of obs. Increments: J = Vo,a—
Vo

The sensitivity of cost function with respect to the assimilated observations:

o ~
2[RI 7 e X, ]
0

With this formula we can predict the impact of observations on the forecasts!
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Test ability to detect the poor quality observation on
the Lorenz 40 variable model

e
Observation impact from LB (red) and from ensemble sensitivity method (green)

Larger random error Biased observation case
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v’ Like adjoint method, ensemble sensitivity method can detect the observation
poor quality (11t observation location)

v' The ensemble sensitivity method has a stronger signal when the observat|02n has
negative impact on the forecast.



Test ability to detect poor quality observation for
different forecast lengths
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How can we possibly detect bad observations even
after all skill is lost??? (Liu and Kalnay, 2009)

20 days

biased case

larger random error
LB (grey), EM (black), fest length: 20 days

LB (grey), EM (black), fest length: 20 days
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Error made by using the -6hr
weights in the forecasts

.......... "
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Forecast length (day)

Mean Square Error of the -6hr weighted forecasts (diamonds),
MSE of the Ohr ensemble mean (circles) and MS Difference
between ensemble mean and weighted forecasts (triangles).

v’ After 20-days there is no
forecast skill but the
ensemble sensitivity still
detects the wrong
observation.

v' The ensemble sensitivity
is based on the assumption
that the analysis weights
can be used in the
forecasts. This is accurate
even after forecast error
has saturated (triangles).

v' As a result we can
identify a bad observation
even after forecast skill is
lost.
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Analysis sensitivity to observations
and exact Cross-Validation in an EnKF

Junjie Liu, E Kalnay, T Miyoshi and C Cardinali
QJRMS 2009

Inspired in Cardinali et al., 2004
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Observation quality control using cross-validation
INN—
I < o I O =)
0 a(—i)\2 l,t 1,1 .
_— . — ) —_— \ l: 1,-..,m
DR Dy

i,t

0.4+
0.35 1
0.3+
0.251
0.2 1
0.151
0.1+
0.05 1
0
-0.05

5 10 5 20 25 30 35 40
Grid Points
Experimental design: the observation error standard deviation at the 11" point is 4
times larger than the others.
a(—i

*  The difference between the predicted observation y*'and the actual obs y! is

larger when the ith observation has larger error (111 point).
“ Does not need much computational time.
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Observation impact based on self-sensitivity & the observation
impact from adjoint and ensemble sensitivity method

The adjoint and ensemble sensitivity method:
' a a\2
]:[(X{IO_Xt) (th6_Xt)]

The cost function reflects the impact of all the
observations assimilated at 00hr on the forecast
error difference (model space) at time t.

The cost function is rewritten as function of the _
observations assimilated at 00hr. -6hr 0Ohr t analysis

f( 0 _ (=) a
tIO yz t10 i,t

The observation impact based on self-sensitivity: /
— (v a \2 (=) _ a2
i =10 —yi) — (yz'f,zl()l =y l = Vi

tIO l ,t10
(Total-J) Obs.

The cost function reflects the impact of the it" /
observation assimilated at 00hr on the forecast error
difference (observation space) at time t. Total Obs.

There is no need to rewrite the cost function. -6hr OOhr t analysis

e
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Coarse analysis with interpolated weights

Yang et al (2008)
B
In EnKF the analysis is a weighted average of the forecast ensemble

We performed experiments with a QG model interpolating weights
compared to analysis increments.

Coarse grids of 11%, 4% and 2% interpolated analysis points.
Weight fields vary on large scales: they interpolate very well
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1/(3x3)=11% analysis grid 26



Weight interpolation versus Increment interpolation

ANALYSIS INCREMENTS FROM WEIGHTS INTERPOLATION
(a) Full Analysis (b) 11% Analysis grids (c) 4% Analysis grids (d) 2% Analysis grids
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ANALYSIS INCREMENTS FROM INCREMENTS INTERPOLATION (FROM FULL ANALYSIS)
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With increment interpolation, the analysis degrades quickly...
With weight interpolation, there is almost no degradation!

LETKF maintains balance and conservation properties
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Impact of coarse analysis on accuracy
o T——

Analysis error of potential vorticity

| 128 observations (8% coverage)
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With increment interpolation, the analysis degrades

With weight interpolation, there is no degradatiap,
the analysis is actually slightly better!



Model error: comparison of methods
to correct model bias and inflation

Hong Li, Chris Danforth, Takemasa Miyoshi,
and Eugenia Kalnay, MWR (2009)

Inspired by the work of Dick Dee, but with model
errors estimated in model space, not in obs space

29



Model error: If we assume a perfect model in EnKF,

we underestimate the analxsis errors gLi, 20072

perfect model

-------- LDM+ simplified DdSM+
ANALYSIS RMSE — - DdSM+ —— mulinfl
addinfl —— control run
100 — ~—
200
©
. 300 -
c
~ 400
o 500
- |
n 600 A
o
b 700
0O 800
900'_ L i1l

0 '04 08 12 16 2 24 2B 32 36 4 44 4fa\512 5.6
U—wind RMSE (m/s)
Imperfect model

perfect SPEEDY model (obs from NCEP- NCAR

Reanalysis NNR)
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— Why is EnKF vulnerable to model errors ?

Ens 1
Background ensemble spread
100 9
Ens 2
200 == _
300- AN . Forecast
S~ erro
400 “~Jruth

~
~
~

> In the theory of Extended Kalman
filter, forecast error is represented by

500

PRESSURE [hPa]

. // - imperfect the growth of errors in IC and the
— perfect model errors.
700 1
800
» However, in ensemble Kalman filter,
9001 error estimated by the ensemble
12 15 18 21 o2& 27 3 33 36 spread can only represent the first

type of errors.

The ensemble spread 1s ‘blind’
to model errors




We compared several methods to handle
bias and random model errors

perfect model
simplified DdSM+

ANALYSIS RMSE — - DdSM+ —— mulinfl

addinfl —— control run

100 —
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o_’,.'b'f4 0.8 1.2 1.6 2 24 2B 32 36 4 44 48\ 52 56
i U—wind RMSE (m/s) imperfect model

PRESSURE (hPa)

LoW"DimensionaI Method to correct the bias (Danforth et al,3g007)
combined with additive inflation



Simultaneous estimation of EnKF inflation and

obs errors in the presence of model errors
- TINNN——

Hong Li, Miyoshi and Kalnay (QJ, 2009)

Inspired by Houtekamer et al. (2001) and
Desroziers et al. (2005)

» Any data assimilation scheme requires accurate statistics for the
observation and background errors (usually tuned or from gut feeling).
» EnKF needs inflation of the background error covariance: tuning is

expensive
» \Wang and Bishop (2003) and Miyoshi (2005) proposed a technique to
estimate the covariance inflation parameter online. It works well if ob errors

are accurate.
» We introduce a method to simultaneously estimate ob errors and

inflation.
33



Diagnosis of observation error statistics

Houtekamer et al (2001) well known statistical relationship:

omB*omMB <d__d’_, >=HP'H +R

Desroziers et al, 2005, introduced two new statistical relationships:

OMA*OMB <d,_d ,>=R
T _ byyT
AMB*OMB <d,,d _,” >>=HP'H

These relationships are correct if the R and B statistics are correct and
errors are uncorrelated!

With inflation:  HP’H' — HAP’H! with A>1
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Diagnosis of observation error statistics
NN —

Transposing, we get “observations” of A and ¢’

AO _ (dg—bdo—b)_Tr(R) OMB2
Tr(HP’H")
A”=Y (vf = yDOT =¥ Tr(HP'H') AMBTOMB
j=1
~ \2 T X b
(6,0 =d, d,,/p=2,0/-y)y -¥)/p  OMA*OME

J=1

Here we use a simple KF to estimate both A and 602 online.
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SPEEDY model: online estimated observational

errors, each variable started with 2 not 1.

online estimating A

2.5 I | | | | | | | |
o —uwind
& — temperature ||
g 10000
: — Pa/100
B
Q
Q
o
5 EE—
| | | | | | | | |

Time Step

The original wrongly specified R quickly
converges to the correct value of R (in about 5-10
days) 36



Estimation of the inflation

Estimated Inflation

003 \ﬁ' l‘

=0.01

1 ! ! 1 1 1 1 1 1 1 1
20 40 &0 8O 100 120 140 160 180 200 220
Time steps

Using an initially wrong R and A but estimating them adaptively
Using a perfect R and estimating A adaptively

After R converges, the time dependent inflation factors are quite sgmilar
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Tests with LETKF with imperfect L40 model:
added random errors to the model

Error A:true 0.=1.0 B: true 0.=1.0 | C: adaptiveo.
amplitude (tuned) constant A | adaptive A adaptive A
(random)

a A RMSE A RMSE | A RMSE 002

4 0.25 0.36 0.27 | 0.36 [0.39] 0.38 |0.93

20 0.45 0.47 0.41 | 047 038 0.48 |1.02

A A
100 1.00 0.64 0.87 | 0.64 |0.80|( 0.64 )| 1.05

The method works quite well even
with very large random errors!
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Tests with LETKF with imperfect L40 model:
added biases to the model

Error A:true 62=1.0 B:trueo.=1.0 | C: adaptivec’
amplitude
. (tuned) constant A | adaptive A adaptive A
(bias)
o A RMSE A RMSE | A RMSE| ¢?
1 0.35 0.40 0.31 | 0.42 |0.35| 0.41 |0.96
4 1.00 0.59 0.78 | 0.61 [0.77| 0.61 |1.01
7 1.50 @ 1.11 | 0.71 ]0.81 @ 1.36

The method works well for low biases, but
less well for large biases: Model bias needs
to be accounted by a separate bias correction



Summary

EnKF and 4D-Var give similar results in Canada and in JMA,
except for model bias. (Buehner et al, Miyoshi et al)

EnKF is better than GSI with half resolution model, 64
members. Computationally competitive (Whitaker)

Many ideas to further improve EnKF were inspired in 4D-Var:
No-cost smoothing and “running in place”
A simple outer loop to deal with nonlinearities
Adjoint forecast sensitivity without adjoint model
Analysis sensitivity and exact cross-validation
Coarse resolution analysis without degradation

Correction of model bias combined with additive inflation gives the
best results

Can estimate simultaneously optimal inflation and obs. errors
40



Extra Slides on Low D

Im Method

41



2.3 Low-dim method (Danforth et al, 2007: Estimating and correcting global
weather model error. Mon. Wea. Rev, J. Atmos. Sci., 2007)

« Generate a long time series of model forecast minus reanalysis X,
from the training period f

-X
NNR NNR * NNR
NNR xtruth
2 NNR -
\ t=6hr -
:xf

We collect a large number of estimated errors and estimate from them bias, etc.

L M
el =x/, —x\, = MEH-ME)+b+> B.e,+ > VL,
T =1 \ m=1 \

\
Forecast error Time-mean Diurnal degéalﬁent
due to error in IC model bias model error modeperror42




Low-dimensional method

Include Bias, Diurnal and State-Dependent model errors:

T

2
model error = b + Eﬁn,lel
[=1

Having a large number of estimated errors Eallows to
estimate the global model error beyond the bias
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SPEEDY 6 hr model errors against NNR (diurnal cycle)

Error anomalies
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» For temperature at lower-levels, in addition
to the time-independent bias, SPEEDY has
diurnal cycle errors because it lacks diurnal
radiation forcing
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