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Diagnosis of ensemble forecast systems

Why?

Aid forecast system development:
I Quantify meteorologically relevant differences between different

forecast systems.
I Identify deficiencies
I Provide guidance for refining the representation of initial uncertainty

and model uncertainty

Understand dynamics of (initially small) perturbations, i.e. errors, in
the global circulation

I Examine origin of large forecast errors

Limitations: not exhaustive, not only new developments, some of the new things are work in progress
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Diagnosis of the numerical model
used in the ensemble forecast system

ensemble forecast model 6= model used for “deterministic” forecast:
resolution, timestep, . . .

look at performance of the control forecast (unperturbed member of
ensemble)

realism of model climate of perturbed forecast model (including
impact of model perturbations)

Everything as would be done for the deterministic system (except for the
model perturbations).
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Getting the climate right: An example

ECMWF EPS uses Stochastically Perturbed Parametrization
Tendencies (SPPT) (“stochastic physics”)

Operational SPPT (≤ 35R2) distorts the tail of the climatological
distribution of precipitation.

A recent major revision of SPPT has improved precipitation
distribution
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Precipitation frequency ratios between forecasts using tendency perturbations and

forecasts without tendency perturbations. operational SPPT revised SPPT
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Diagnosis of deterministic forecasts
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Diagnosis of probabilistic forecasts

M. Leutbecher Ensemble Forecasting Systems September 2009 7 / 57



Diagnosis of probabilistic forecasts

M. Leutbecher Ensemble Forecasting Systems September 2009 7 / 57



Diagnosis of probabilistic forecasts

M. Leutbecher Ensemble Forecasting Systems September 2009 7 / 57



Diagnosis of probabilistic forecasts

M. Leutbecher Ensemble Forecasting Systems September 2009 7 / 57



Diagnosis of probabilistic forecasts

conclusions for single cases only for exceptional failures

forecast and verification are different objects

M. Leutbecher Ensemble Forecasting Systems September 2009 7 / 57



Diagnosis of probabilistic forecasts: Reliability
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Diagnosis of probabilistic forecasts: Sharpness/Resolution
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Diagnosis of probabilistic forecasts: Skill
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Standard methods to diagnose the pdf

Impractical to assess all aspects of a multivariate probabilistic prediction

How can the assessment be simplified?
1 Limit assessment of probability distribution:

I univariate prediction: e.g. geopotential at 500 hPa
I binary events: does TC strike at x; prediction of a cold anomaly

2 Use summary measures of the overall quality of a predicted pdf (or
some aspect of it):

I Skill of the ensemble mean
I Match between Ens. Mean RMS error and Ensemble Stdev. (reliability)
I Rank Histogram: reliability
I Brier score, (Continuous) Ranked Probability Score: reliability and

resolution (decomposition!)
I Relative Operating Characterisitic (ROC): (discrimination)
I Logarithmic Score (Ignorance): reliability and resolution
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Proper scores

strictly proper implies that optimizing the score leads to the correct
probability distribution

optimization of a score that is not proper is likely to lead to a wrong
distribution

concise mathematical definitions of proper and strictly proper are
available (see Gneiting and Raftery, 2004)

examples of proper scores: BS, RPS, CRPS, logarithmic score

Fig. 1,
Gneiting and Raftery (2004)
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Figure 1: Probabilistic sea-level pressure forecasts over the North American Pacific North-
west in January–July 2000. The scores are shown as a function of the inflation factor r,
where the predictive density is taken to be normal, centered at the ensemble mean fore-
cast, and with predictive standard deviation equal to r times the standard deviation of the
forecast ensemble. The scores were subject to linear transformations as detailed in Table 2.

Gneiting and Polakowski 2003, p. 4). To obtain calibrated predictive probability distri-
butions, it thus seems necessary to carry out some form of statistical postprocessing. One
natural approach is to take the predictive distribution for sea-level pressure at any given site
as normal, centered at the ensemble mean forecast, and with predictive standard deviation
equal to r times the standard deviation of the forecast ensemble. Density forecasts of this
type were proposed by Déqué, Royer and Stroe (1994) and Wilks (2002). Following Wilks,
we refer to r as an inflation factor.

7.1 Evaluation of density forecasts

In the aforementioned approach the predictive density is Gaussian, say φµ,rσ: its mean,
µ, is the ensemble mean forecast, and its standard deviation, rσ, is the product of the
inflation factor, r, and the standard deviation of the five-member forecast ensemble, σ. We

19
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Spread-error relationship and ensemble size

Assume a perfectly reliable (statistically consistent) M-member ensemble:
Ens. members xj , j = 1, . . . ,M and truth y are independent draws from a
distribution with mean µ and variance σ2.

Expected squared
error of ensemble
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Spread-error relationship and ensemble size

Perfectly reliable M-member ensemble:
Ens. members xj , j = 1, . . . ,M and truth y are independent draws from a
distribution with mean µ and variance σ2.

For large ensembles, e.g. M = 50,

ensemble variance = squared ensemble mean error

in practice.

For smaller ensemble size, e.g. M ≤ 20,(
1− 1

M

)−1

ens. variance =

(
1 +

1

M

)−1

squared ens. mean error
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Spread versus error in 2002

500 hPa
geopotential height,

N.-Hem.
extra-tropics

dashed: ens. stdev.
solid: EM RMSE

10 member ensembles

ECMWF(TL255L40),
MSC, NCEP

May–July 2002 Fig. 5,

Buizza et al. 2005

lead time again may be due to the use of multiple model
versions in that ensemble.

3) MEASURES OF RELIABILITY

In this subsection statistical reliability is assessed in
three different ways. The first measure used is the dis-
crepancy between the ensemble spread and the error of
the ensemble mean, both shown for all three systems in
Fig. 5. For a statistically reliable ensemble system, re-
ality should statistically be indistinguishable from the
ensemble forecasts. It follows that the distance between
the ensemble mean and the verifying analysis (error of
the ensemble mean) should match that between the
ensemble mean and a randomly selected ensemble
member (ensemble standard deviation or spread). A
large difference between the error of the ensemble
mean and the ensemble standard deviation is therefore
an indication of statistical inconsistency.

As seen from Fig. 5, the growth of the rms error
exceeds that of the spread for all three systems (except
as noted below). The growth of ensemble perturbations
(spread) in the three systems is affected by two factors:
the initial ensemble perturbations, and the characteris-
tics of the model (or model versions) used. While the

initial perturbations are important during the first few
days, their influence diminishes with increasing lead
time since the perturbations rotate toward directions
that expand most rapidly due to the dynamics of the
atmospheric flow (as represented in a somewhat differ-
ent manner in each model), as discussed in relation with
Figs. 1–3.

Out of the three systems the EC-EPS exhibits the
largest (and therefore most realistic) perturbation
growth. An important observation based on Fig. 5 is
that the perturbations’ growth is lower than the error
growth in the MSC- and NCEP-EPS: this deficiency
in perturbation growth is partially compensated by
initial perturbation amplitudes that are larger than
the level of estimated initial errors. Because of the use
of a purely Monte Carlo perturbation technique that
generates initial perturbations containing neutral and
decaying modes, the MSC-EPS exhibits the lowest per-
turbation growth during the first day of integration.
After the first day, the NCEP-EPS exhibits the lowest
(and least realistic) perturbation growth. Most likely
this is due to the lack of model perturbations in that
ensemble.

The relatively larger growth rate of the EC-EPS in
the 3–10-day range is due partly to the sustained growth

FIG. 5. May–Jun–Jul 2002 average rms error of the ensemble mean (solid lines) and ensemble standard deviation
(dotted lines) of the EC-EPS (gray lines with full circles), the MSC-EPS (black lines with open circles), and the
NCEP-EPS (black lines with crosses). Values refer to the 500-hPa geopotential height over the Northern Hemi-
sphere latitudinal band 20°–80°N.

MAY 2005 B U I Z Z A E T A L . 1087
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Spread versus error in 2007

500 hPa geopotential, N.-Hem. extra-tropics
ECMWF, cycle 32r2 cycle 32r3
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Figure 12. Ensemble standard deviation (spread) and ensemble mean RMS error (RMSE) as a function of forecast lead time for 500 hPa
geopotential for (a, b) the Northern Hemisphere (20 °N–90 °N) and (c, d) Southern Hemisphere (20 °S–90 °S) for (a, c) Cy32r2 and (b, d)
Cy32r3. Statistics are based on 69 cases during June to September 2007. The vertical bars are confidence intervals based on bootstrapping the
dates in the sample of cases. If the RMSE falls within the bars, the ensemble is not significantly over- or under-dispersive (the probability of

the RMSE being above or below the bar by chance is 1%).
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(20 °N–90 °N) and (c, d) Southern Hemisphere (20 °S–90 °S) for (a, c) 500 hPa geopotential and (b, d) 850 hPa temperature. The RPSS is
determined for ten climatologically equally likely categories. Cy32r3 is significantly better (worse) than Cy32r2 at the 99% level if the black

curve lies below (above) the vertical bars.
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50 member, TL399L62

69 cases, June-Sept. 2007

Improved match due to revised model physics together with a 30% reduction of the

initial perturbation amplitude Time to retire?
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Spread versus error in 2007
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Figure 12. Ensemble standard deviation (spread) and ensemble mean RMS error (RMSE) as a function of forecast lead time for 500 hPa
geopotential for (a, b) the Northern Hemisphere (20 °N–90 °N) and (c, d) Southern Hemisphere (20 °S–90 °S) for (a, c) Cy32r2 and (b, d)
Cy32r3. Statistics are based on 69 cases during June to September 2007. The vertical bars are confidence intervals based on bootstrapping the
dates in the sample of cases. If the RMSE falls within the bars, the ensemble is not significantly over- or under-dispersive (the probability of

the RMSE being above or below the bar by chance is 1%).
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Figure 13. Ranked Probability Skill Score (RPSS) for Cy32r2 and Cy32r3 as a function of forecast lead time for the (a, b) Northern Hemisphere
(20 °N–90 °N) and (c, d) Southern Hemisphere (20 °S–90 °S) for (a, c) 500 hPa geopotential and (b, d) 850 hPa temperature. The RPSS is
determined for ten climatologically equally likely categories. Cy32r3 is significantly better (worse) than Cy32r2 at the 99% level if the black

curve lies below (above) the vertical bars.

Copyright  2008 Royal Meteorological Society Q. J. R. Meteorol. Soc. 134: 1337–1351 (2008)
DOI: 10.1002/qj

Fig. 12, Bechtold et al. 2008
50 member, TL399L62

69 cases, June-Sept. 2007
Improved match due to revised model physics together with a 30% reduction of the

initial perturbation amplitude Time to retire?
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Explore more directions in phase space

Agreement for other variables (e.g. T850)?

Other regions (e.g. tropics)?

Detailed geographical distribution of spread?

Different spatial scales?
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Example: v850 tropics (20◦S–20◦N)
SPPT revision

Ens. Mean
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operational SPPT revised SPPT

40 cases Nov/Dec 2007 + Jul/Aug 2008, TL399(255 from D+10)
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Scale-dependent spread-error diagnostic
spread map D+2: unfiltered fields

D+2 RMSE Z500 UF DJF 2006

0

4

8

12

16

20

24

28

32

36

40

44

D+2 Spread Z500 UF DJF 2006

0

4

8

12

16

20

24

28

32

36

40

44

region spread : RMSE
20◦–90◦N 1.16
35◦-65◦N 1.22
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Scale-dependent spread-error diagnostic
spread map D+2: total wavenumber 8–21
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Assessing flow-dependent and data-dependent variations in
pdf-shape

sample size limited: therefore initially focus on 2nd moment of pdf, i.e.
variance

1 Stratification by ensemble standard deviation: spread-reliability

2 Modified event definition: EM error > θ, where threshold θ depends
on a “climatological” stdev of the EM error

3 Gaussian centred on CF or EM as reference. Stdev of Gaussian can
vary geographically and seasonally.
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spread-reliability: methodology
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spread-reliability: methodology

see also Leutbecher and Palmer (2008); Leutbecher et al. (2007)
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spread-reliability: Z500 DJF06/07

Z500 Stdev and ens. mean RMSE, 35N–65N, DJF06/07
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Fig. 7 from Leutbecher, Buizza & Isaksen (2007)

deficiency at the early forecast ranges; reliability improves with lead time

M. Leutbecher Ensemble Forecasting Systems September 2009 23 / 57



spread-reliability: Z500 DJF06/07

Z500 Stdev and ens. mean RMSE, 35N–65N, DJF06/07
t = 24 h t = 48 h t = 120 h

4 8 12 16 20 24 28
RMS spread (m)

4

8

12

16

20

24

28

R
M

S
 e

rr
or

 (m
)

DJF2007
z500hPa,  t=+24h,  N.hem.mid

10 15 20 25 30 35 40 45 50 55
RMS spread (m)

10

15

20

25

30

35

40

45

50

55

R
M

S
 e

rr
or

 (m
)

DJF2007
z500hPa,  t=+48h,  N.hem.mid

20 30 40 50 60 70 80 90 100 110
RMS spread (m)

20

30

40

50

60

70

80

90

100

110

R
M

S
 e

rr
or

 (m
)

DJF2007
z500hPa,  t=+120h,  N.hem.mid

Fig. 7 from Leutbecher, Buizza & Isaksen (2007)

deficiency at the early forecast ranges; reliability improves with lead time

M. Leutbecher Ensemble Forecasting Systems September 2009 23 / 57



Comparison with other ensembles in TIGGE

data provided by Renate Hagedorn

direct model output

verified with quasi-independent analysis: ERA-Interim

period: DJF2008/2009 (0 UTC, 90 start dates)

region: N.-Hem midlatitudes (35◦–65◦N)
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Spread-reliability: GH 500 hPa
TIGGE comparison
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Ens. stdev and EM RMS error: 500 hPa geopotential
TIGGE comparison
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CRPS: 500 hPa geopotential
TIGGE comparison
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Binary events based on the climate

consider a short lead time . . .
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Binary events based on the climate

consider an even shorter lead time . . .
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Binary events based on Ens. mean and its error climate
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Binary events based on Ens. mean and its error climate

scales naturally with lead time, expect to be better suited to diagnose skill
of variations in pdf-shape
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Binary events based on Ens. mean and its error climate

scales naturally with lead time, expect to be better suited to diagnose skill
of variations in pdf-shape
can also use CF and climate of CF errors . . .
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An error climatology based on reanalyses and reforecasts

reforecast started from ERA-40 and operational analyses (reforecasts
from ERA-Interim operational since March 2009)

5 members (CF + 4 PF) ⇒ Ens. mean slightly less accurate

9 weeks centred on week of interest

18 years, once weekly ⇒ 18× 9 = 162 errors

errors for climatology computed with ERA-Interim analyses

verification for DJF09 with operational analyses
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Probability of different kinds of events
48-hour fc of 850 hPa meridional velocity

valid at 0 UTC on 31 January 2009
P(x > µclim + σclim)850hPa **V velocity (Exp: 0001) - Ensemble member number 50 of  51
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Probability of different kinds of events (2)
48-hour fc of 850 hPa meridional velocity

valid at 0 UTC on 31 January 2009
P(x > EM + σerr) and mslp
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Probabilistic scores for new types of events

Brier Score: (p − o)2

Logarithmic Score (Ignorance):

−(o log(p(W )) + (1− o) log(1− p(W ))), where

p(W )(n) =
n + 2/3

M + 4/3
∈
[

2

3M + 4
,

3M + 2

3M + 4

]
with n being the number of members predicting the event and M
being the ensemble size. The p(W )(n) are known as Tukey plotting
position; cf. also Cromwell’s rule and Wilks (2006).

ROC-area:
∫ 1
0 H dF ∈ [0.5, 1], where H and F denote Hit Rate and

False Alarm Rate, respectively.
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Logarithmic Score for x > EM + σerr
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Area under the ROC for x > EM + σerr
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Intermediate Summary: Events relative to EM/CF

Overall, scores (BS, IgnS, ROC-area) indicate that EPS has more skill
in predicting variations in pdf shape than climatological error pdf

I However, additional EPS skill tends to be relatively small initially.
I It increases to max typically around t ≈ 4± 2 d.
I Then, additional skill gradually decreases

Similar results for T850, Z500, and also for MAM09, and for
verification with ERA-Interim analyses (not shown)

Initial skill increase consistent with fact that spread-error reliability
improves with lead time

Work in progress . . .
I What should be expected from a good EPS system?
I Can we get additional insight by using this technique to compare

different ensemble configurations?
I What can we learn from this for ensemble calibration techniques?
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Evaluation of the pdf p(x) of a continuous variable

Two proper scores
I Continuous Ranked Probability Score (CRPS)
I Continuous Ignorance Score (CIgnS)

Two reference forecasts are considered:
I N(CF, σ2

err(CF)):
∆score between EPS and N(CF, σ2

err) evaluates all moments of pdf
I N(EM, σ2

err(EM)):
∆score between EPS and N(EM, σ2

err) assesses 2nd and higher
moments of pdf

What difference should be expected?
I define two kinds of “perfect probabilistic forecast”
I an analytical example

Results for the operational ECMWF EPS
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The Continuous Ranked Probability Score
CRPS = Mean squared error of the cumulative distribution Pfc

cdf of truth Py (x) = P(y ≤ x) = H(x − y) (1)

cdf of forecast Pfc(x) = P(xfc ≤ x) (2)

CRPS =

∫
(Pfc(x)− Py (x))2 dx (3)

=

∫
BSx dx (4)
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equal to Mean Absolute Error for a deterministic forecast
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CRPS = Mean squared error of the cumulative distribution Pfc
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Continuous Ignorance Score
or Continuous Logarithmic Score

Let y denote truth and p the forecasted probability density

CIgnS = − log p(y)

For a Gaussian forecast N(µ, σ2), we obtain

CIgnS = log(σ
√

2π) +
(y − µ)2

2σ2

Mean squared error of reduced centred variable plus
logarithmic penalty term for the spread (σ).
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Perfect probabilistic forecasts

Usually: skill score = 0 ⇒ as good as climatology
skill score = 1 ⇒ perfect deterministic forecast

We may still get closer to 1 but will never reach it!

Obs. and model uncertainties +
perturbation growth
characteristics of the
atmosphere impose a lower limit
on the forecast error variance
σ2

f > 0.

Define a perfect probabilistic
forecast under the constraint
v ≡ σ2

f = constant
(consider a fixed lead time)
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Levels of perfection

use label t to refer to different valid times of the forecast (lead time fixed)

Perfect dynamic forecast: Perfect flow- and data-dependent variations in
pdf-shape

pt(x) = pd(x − µt , t)

with pd statistically consistent with error of the mean µt for each t,

given average variance Et

R
x2pd(x , t) = v and mean zero for each t.

Perfect static forecast: Constant (or seasonally varying) flow- and
data-independent pdf-shape which is perfect:

pt(x) = ps(x − µt)

with ps statistically consistent with the error of the mean µt in the time-average sense,

and
R

xps dx = 0, and
R

x2ps dx = v .
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An idealized example with Gaussian distributions

Now, focus on variance prediction.
Let Ens. Mean error be a random variable distributed according to

p∗(x , t) =
1

σ(t)
√

2π
exp(− x2

2σ2(t)
)

perfect dynamic forecast: issue pd = N(µt , σ
2(t))

perfect static forecast: issue ps = N(µt , σ2) with σ2 = Etσ
2(t)

What is the difference in probabilistic scores (CRPS, CIgnS) between the
perfect dynamic forecast and the perfect static forecast?
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Expected value of CRPS

Let y denote the true value of the EM error. We see that the expected
value of the CRPS is

Ey CRPS(N(0, σ2
f ), y) =

σt√
π

[
−σf

σt
+
√

2 + 2σ2
f /σ

2
t

]
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The CRPS has a minimum value at σf = σt . This is not surprising as the
CRPS is a proper score.
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Expected value of CIgnS
Again let y denote the true value of the EM error. The expected value of
the Continuous Ignorance Score is

Ey CIgnS(N(0, σ2
f ), y) =

1

2

[
ln(2πσ2

f ) + (σt/σf )2
]
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 I_
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The minimum is again at σf = σt ; CIgnS is proper!
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Two particular distributions of variance

Let v = σ2 denote the variance

continuous uniform distribution: v ∼ U(v1, v2)

discrete uniform distribution: v ∼ 1
2δ(v − v1) + 1

2δ(v − v2)

Introduce dimensionless parameter

δ =
v2 − v1

2v
∈ [0, 1]
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Expected CRPS for uniform variance distributions

CRPS ratio: dynamic forecast / static forecast
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continuous
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for 48-hour error doubling:
3% (20%) reduction in CRPS =⇒ 2-hour (13-hour) gain in lead time
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Expected CIgnS for uniform variance distributions

CIgnS( static forecast ) − CIgnS( dynamic forecast )
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for 48-hour error doubling:
reduction of CIgnS by 0.15 (0.7) =⇒ 10-hour (48-hour) gain in lead time
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Dressed ens. mean forecast: v 850 hPa, 35◦–65◦N, DJF09

EPS raw prob. for CRPS; Gaussian for CIgnS

N(EM, σ2
err(EM)) σerr estimated from reforecasts

CRPS
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T850, Z500, qualitatively similar but . . .

Deficiencies in the short-range can be addressed via calibration (to a certain
extent).
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Dressed control forecast: v 850 hPa, 35◦–65◦N, DJF09

EPS raw prob. for CRPS; Gaussian for CIgnS

N(CF, σ2
err(CF)) σerr estimated from reforecasts

CRPS

0 2 4 6 8 10 12 14
fc-step (d)

0

1

2

3

4

5

C
R

P
S

2008120100-2009022800 (90)
ContinuousRankedProbabilityScore, ContinuousRankedProbabilityScoreCFWithErrClim

v850hPa,  Northern Mid-latitudes

TMP161ec7

CIgnS

0 2 4 6 8 10 12 14
fc-step (d)

0

1

C
on

tin
uo

us
Ig

no
ra

nc
eS

co
re

G
au

ss
ia

n

2008120100-2009022800 (90)
ContinuousIgnoranceScoreGaussian, ContinuousIgnoranceScoreCFWithGaussianErrClim

v850hPa,  Northern Mid-latitudes

TMP161ec7

M. Leutbecher Ensemble Forecasting Systems September 2009 49 / 57



Diagnosis & Numerical Experimentation
Initial uncertainty

Deeper understanding from applying diagnostic techniques to clean
numerical experimentation designed to answer specific questions

In the early ranges, say up to day 2, EM dressed with a climatological
error distribution as good as or better than EPS.

If CF/EM + past errors provide skilful probabilistic forecasts, then
one may ask whether past errors might be a successful EPS
perturbation strategy
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Flow-independent perturbations

Mureau, Molteni & Palmer (1993)
I initial perturbations based on 6-hour forecast errors from past 30 days

& Gram-Schmidt-orthonormalisation
I assimilation OI
I model T63

I conclusion: SV perturbations are superior

Magnusson, Nycander & Källén (2008): flow-independent perts.
constructed from scaled differences of randomly picked atmospheric
states. Initially quite overdispersive in Z500, but skill close to
ensemble using operational SV perturbations.

Here: use random sample from past 24-hour forecast errors as initial
perturbations (advantage: characteristics of short-range fc errors are
closer to those of analysis errors than scaled differences of full fields)
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Time mean spread vs. RMSE of Ens. mean
Meridional wind component (m s−1) at 850 hPa, t=48 h
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850hPa V velocity (Exp: ezh1) - Ensemble member number 1 of  51

Friday 23 November 2007 00UTC ECMWF   EPS Perturbed Forecast t+48 VT: Sunday 25 November 2007 00UTC

0.5

0.7

1

1.4

2

2.8

4

5.6

8
850hPa V velocity (Exp: f0u0) - Ensemble member number 1 of  51

Friday 23 November 2007 00UTC ECMWF   EPS Perturbed Forecast t+48 VT: Sunday 25 November 2007 00UTC

0.5

0.7

1

1.4

2

2.8

4

5.6

8

850hPa V velocity (Exp: ezh1) - Ensemble member number 1 of  51
Friday 23 November 2007 00UTC ECMWF   EPS Perturbed Forecast t+48 VT: Sunday 25 November 2007 00UTC

0.5

0.7

1

1.4

2

2.8

4

5.6

8
850hPa V velocity (Exp: f0u0) - Ensemble member number 1 of  51

Friday 23 November 2007 00UTC ECMWF   EPS Perturbed Forecast t+48 VT: Sunday 25 November 2007 00UTC

0.5

0.7

1

1.4

2

2.8

4

5.6

8

top: ens. stdev.; bottom: ens. mean RMS error; 50 cases: 23 Nov ’07–29 Feb ’08
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CRPS difference: FCE − SV
Meridional wind component (m s−1) at 850 hPa, t=48 h

850hPa **V velocity (Exp: f0u0)
Friday 23 November 2007 00UTC ECMWF   EPS Control Forecast t+48 VT: Sunday 25 November 2007 00UTC
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Blue means EPS based on short-range forecast errors is more skilful.

50 cases: 23 Nov 2007 – 29 Feb 2008
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Spread-reliability
850 hPa temperature, 35◦–65◦N
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Conclusions

Comparison of Spread and EM-error continues to be an essential tool
I Have not achieved a well tuned system for all variables and regions.
I Achieving a reliable distribution of spread in space and time in the early

forecast ranges is one of the major challenges for the future.

Moment-based decomposition of the ensemble skill has been explored
I Skill of Ens. mean + skill of pdf of Ens. mean errors
I Continuous Ignorance Score appears better suited than CRPS to

evaluate flow- and data-dependent variations in spread.

Initial perturbations based on past short-range forecast errors
I → challenging benchmark for flow-dependent initial perturbations (e.g.

singular vectors).
I Rare locally large perturbations that are inconsistent with the flow may

be an obstacle for operational implementation of the benchmark
system.

I Further diagnostic work in this area is expected to help the development
of ensemble prediction system with improved flow-dependent variations
of the pdf (in particular in the earlier forecast ranges).
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evaluate flow- and data-dependent variations in spread.

Initial perturbations based on past short-range forecast errors
I → challenging benchmark for flow-dependent initial perturbations (e.g.

singular vectors).
I Rare locally large perturbations that are inconsistent with the flow may

be an obstacle for operational implementation of the benchmark
system.

I Further diagnostic work in this area is expected to help the development
of ensemble prediction system with improved flow-dependent variations
of the pdf (in particular in the earlier forecast ranges).
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Issues to verify “initial uncertainty”

truth not available

short-range fc error correlated with analysis error → require obs (or
perhaps an independent analysis)

obs uncertainty/analysis uncertainty needs to be accounted for if
ensemble spread is smaller than or of similar magnitude as the obs/an
uncertainty.
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Multivariate verification

Why? Ensemble of assimilations should provide a varying background
error covariance to the assimilation system. One should attempt to
verify the flow-dependent covariances.

There are user applications that will be dependent on the joint pdf of
several variables (e.g. distributed in space or several variables).
Implications for suitable ensemble size can be different from
univariate case.
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