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@ Introduction

© Standard diagnostics for ensembles
@ Introduction to standard diagnostics
@ Examples of standard diagnostics
@ Scale-dependent spread-error diagnostic

e Assessing the spatio-temporal variation of the pdf-shape
@ Spread-reliability
e TIGGE
@ Changing event type
@ Evaluation of the pdf of a continuous variable
@ Perfect probabilistic forecast?
@ Results with Dressed CF and dressed EM for DJF09

@ Diagnosis & Numerical Experimentation

© Conclusions
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Diagnosis of ensemble forecast systems
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Diagnosis of ensemble forecast systems

2m Temperature reduced to station height (°C) 115m (T799) 105m (T399)
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Why?

@ Aid forecast system development:
» Quantify meteorologically relevant differences between different
forecast systems.
> Identify deficiencies
» Provide guidance for refining the representation of initial uncertainty
and model uncertainty
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Why?

@ Aid forecast system development:
» Quantify meteorologically relevant differences between different
forecast systems.
> Identify deficiencies
» Provide guidance for refining the representation of initial uncertainty

and model uncertainty
e Understand dynamics of (initially small) perturbations, i.e. errors, in
the global circulation
» Examine origin of large forecast errors
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Diagnosis of the numerical model

used in the ensemble forecast system

@ ensemble forecast model # model used for “deterministic” forecast:
resolution, timestep, ...

@ look at performance of the control forecast (unperturbed member of
ensemble)

o realism of model climate of perturbed forecast model (including
impact of model perturbations)

Everything as would be done for the deterministic system (except for the
model perturbations).
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Getting the climate right: An example

o ECMWF EPS uses Stochastically Perturbed Parametrization
Tendencies (SPPT) (“stochastic physics”)

@ Operational SPPT (< 35R2) distorts the tail of the climatological
distribution of precipitation.

@ A recent major revision of SPPT has improved precipitation

distribution
Northern Extra-tropics Tropics
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Precipitation frequency ratios between forecasts using tendency perturbations and

forecasts without tendency perturbations. — operational SPPT.=—— revised-SPPT
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Diagnosis of deterministic forecasts
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Diagnosis of probabilistic forecasts
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Diagnosis of probabilistic forecasts
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Diagnosis of probabilistic forecasts

A

>

@ conclusions for single cases only for exceptional failures

o forecast and verification are different objects
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Diagnosis of probabilistic forecasts: Reliability
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Diagnosis of probabilistic forecasts: Sharpness/Resolution
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Diagnosis of probabilistic forecasts: Sharpness/Resolution
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Diagnosis of probabilistic forecasts: Skill
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Diagnosis of probabilistic forecasts: Skill

M. Leutbecher =~ €CECMWF Ensemble Forecasting Systems September 2009 10 / 57



Standard methods to diagnose the pdf

Impractical to assess all aspects of a multivariate probabilistic prediction

How can the assessment be simplified?
© Limit assessment of probability distribution:

> univariate prediction: e.g. geopotential at 500 hPa
> binary events: does TC strike at x; prediction of a cold anomaly
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Impractical to assess all aspects of a multivariate probabilistic prediction

How can the assessment be simplified?
© Limit assessment of probability distribution:

> univariate prediction: e.g. geopotential at 500 hPa
» binary events: does TC strike at x; prediction of a cold anomaly

@ Use summary measures of the overall quality of a predicted pdf (or
some aspect of it):

> Skill of the ensemble mean
» Match between Ens. Mean RMS error and Ensemble Stdev. (reliability)
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Standard methods to diagnose the pdf

Impractical to assess all aspects of a multivariate probabilistic prediction

How can the assessment be simplified?
© Limit assessment of probability distribution:

> univariate prediction: e.g. geopotential at 500 hPa
» binary events: does TC strike at x; prediction of a cold anomaly

@ Use summary measures of the overall quality of a predicted pdf (or
some aspect of it):

> Skill of the ensemble mean

» Match between Ens. Mean RMS error and Ensemble Stdev. (reliability)

» Rank Histogram: reliability

> Brier score, (Continuous) Ranked Probability Score: reliability and
resolution (decomposition!)

> Relative Operating Characterisitic (ROC): (discrimination)

> Logarithmic Score (Ignorance): reliability and resolution
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Proper scores

o strictly proper implies that optimizing the score leads to the correct
probability distribution

@ optimization of a score that is not proper is likely to lead to a wrong
distribution

@ concise mathematical definitions of proper and strictly proper are
available (see Gneiting and Raftery, 2004)

@ examples of proper scores: BS, RPS, CRPS, logarithmic score

Fig. 1,
Gneiting and Raftery (2004)

LINEARLY TRANSFORMED SCORE

INFLATION FACTOR R
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Spread-error relationship and ensemble size

Assume a perfectly reliable (statistically consistent) M-member ensemble

Ens. members x;,j = 1,..., M and truth y are independent draws from a
distribution with mean s and variance o
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Spread-error relationship and ensemble size

Assume a perfectly reliable (statistically consistent) M-member ensemble

Ens. members x;,j = 1,..., M and truth y are independent draws from a
distribution with mean p and variance o2

2
Expected squared
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Spread-error relationship and ensemble size

Assume a perfectly reliable (statistically consistent) M-member ensemble

Ens. members x;,j = 1,..., M and truth y are independent draws from a
distribution with mean s and variance o

Expected squared
error of ensemble
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p~+sampling error
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Spread-error relationship and ensemble size

Perfectly reliable M-member ensemble:

Ens. members x;,j = 1,..., M and truth y are independent draws from a
distribution with mean s and variance o

For large ensembles, e.g. M = 50,

ensemble variance = squared ensemble mean error

in practice.
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Spread-error relationship and ensemble size

Perfectly reliable M-member ensemble:

Ens. members x;,j = 1,..., M and truth y are independent draws from a
distribution with mean y and variance o

For large ensembles, e.g. M = 50,

ensemble variance = squared ensemble mean error

in practice.

For smaller ensemble size, e.g. M < 20,

1 1\ !
(1 — M> ens. variance = (1 + M) squared ens. mean error
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Spread versus error in 2002

500 hPa
geopotential height,
N.-Hem.

70

extra-tropics °

dashed: ens. stdev. ’E‘w

solid: EM RMSE i
10 member ensembles 2

30

ECMWF(T,255L40),
MSC, NCEP

0 1 2 3 4 5 6 7 8 9 10

Forecast Lead Time ( Day )
— H FIG. 5. May-Jun-Jul 2002 average rms error of the ensemble mean (solid lines) and ensemble standard deviation
M ay J u Iy 2002 Flg 5r (dotted lines) of the EC-EPS (gray lines with full circles), the MSC-EPS (black lines with open circles), and the

. NCEP-EPS (black lines with crosses). Values refer to the 500-hPa geopotential height over the Northern Hemi-
Buizza et al. 2005 sphere latitudinal band 20°-80°N.
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Spread versus error in 2007

500 hPa geopotential, N.-Hem. extra-tropics
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Fig. 12, Bechtold et al. 2008
50 member, T;399L62
69 cases, June-Sept. 2007
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Spread versus error in 2007

=

RMSE and spread (m2s2)

500 hPa geopotential, N.-Hem. extra-tropics
ECMWEF, cycle 32r2
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10 12 14

Lead time (days)

Fig. 12, Bechtold et al. 2008
50 member, T;399L62
69 cases, June-Sept. 2007
Improved match due to revised model physics together with a 30% reduction of the

initial perturbation amplitude
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Spread versus error in 2007

=

RMSE and spread (m2s2)

500 hPa geopotential, N.-Hem. extra-tropics
ECMWEF, cycle 32r2
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Fig. 12, Bechtold et al. 2008
50 member, T;399L62
69 cases, June-Sept. 2007
Improved match due to revised model physics together with a 30% reduction of the

Time to retire?

initial perturbation amplitude
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Explore more directions in phase space

e Agreement for other variables (e.g. T850)7
@ Other regions (e.g. tropics)?

@ Detailed geographical distribution of spread?
°

Different spatial scales?
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Example: v850 tropics (20°5-20°N)

SPPT revision

Ens. Mean
RMSE
_+_
NoTenPert
—— SPgwp
Ens. Stdev --=- SPlw
............. SP1,
----- SP2
% 2 4 6 8 10 12 12
fc-step (d)

— operational SPPT —— revised SPPT

40 cases Nov/Dec 2007 + Jul/Aug 2008, T;399(255 from D+10)
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Scale-dependent spread-error diagnostic
spread map D+2: unfiltered fields

D+2 RMSE Z500 UF DJF 2006 D+2 Spread Z500 UF DJF 2006

region spread : RMSE
20°-90°N 1.16
35°-65°N 1.22

Jung and Leutbecher (2008)
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Scale-dependent spread-error diagnostic
spread map D+2: total wavenumber 8-21

D+2 RMSE Z500 T8-21 DJF 2006 D+2 Spread Z500 T8-21 DJF 2006

region spread : RMSE
20°-90°N 1.32
35°-65°N 1.37

Jung and Leutbecher (2008)
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Assessing flow-dependent and data-dependent variations in
pdf-shape

sample size limited: therefore initially focus on 2nd moment of pdf, i.e.
variance

@ Stratification by ensemble standard deviation: spread-reliability

@ Modified event definition: EM error > 6, where threshold 6 depends
on a “climatological” stdev of the EM error

© Gaussian centred on CF or EM as reference. Stdev of Gaussian can
vary geographically and seasonally.

M. Leutbecher =~ €CECMWF Ensemble Forecasting Systems September 2009 21 / 57



spread-reliability: methodology
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spread-reliability: methodology
; A iA A

iAL
ey e Y -

e e
A o

A‘LA

M. Leutbecher =~ €CECMWF Ensemble Forecasting Systems September 2009 22 / 57



spread-reliability: methodology
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spread-reliability: methodology
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spread-reliability: methodology
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spread-reliability: methodology

4L L L
J7/ A
A = - ‘_'
B W/ - %
N e Ve . 2 -9
o TN~ 2 stdev
see also Leutbecher and Palmer (2008); Leutbecher et al. (2007)
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spread-reliability: Z500 DJF06/07

Z500 Stdev and ens. mean RMSE, 35N-65N, DJF06/07

t=24h t=48h t=120h
28 55 110
50 100
24
45 90
0 £ oo
Si6 s® 87
o ©30 @ 60
%) %) %)
Si2 =2 < 50
o oo o 40
8 15 30
S
4 0 20
4 8 12 16 20 24 28 10 15 20 25 30 35 40 45 50 55 20 30 40 50 60 70 80 90 100110
RMS spread (m) RMS spread (m) RMS spread (m)

Fig. 7 from Leutbecher, Buizza & Isaksen (2007)
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spread-reliability: Z500 DJF06/07

Z500 Stdev and ens. mean RMSE, 35N-65N, DJF06/07

t=24h t=48h t=120h
28 55 110
50 100
24
45 90
20 £ oo
Si6 s® 87
o ©30 @ 60
%) %) %)
S12 =25 S 50
o oo o 40
8 15 30
S
4 0 20
4 8 12 16 20 24 28 10 15 20 25 30 35 40 45 50 55 20 30 40 50 60 70 80 90 100110
RMS spread (m) RMS spread (m) RMS spread (m)

Fig. 7 from Leutbecher, Buizza & Isaksen (2007)
deficiency at the early forecast ranges; reliability improves with lead time
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Comparison with other ensembles in TIGGE

@ data provided by Renate Hagedorn

@ direct model output

o verified with quasi-independent analysis: ERA-Interim
e period: DJF2008/2009 (0 UTC, 90 start dates)

e region: N.-Hem midlatitudes (35°-65°N)
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Spread-reliability: GH 500 hPa

TIGGE comparison

24 h 48 h
441
24+ 401
201 36+
E gsz— A
§16— §28,
o 24
%)12— £20f
=== = Multi-Model
m ti-Model 0:16—
8 —— CMC
12
i —+— ECMWF **4e
4 —— MetOffice 81
4 8 12 16 20 24 — NCEP 8 12 16 20 24 28 32 36 40 44
RMS spread (m) RMS spread (m)
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Ens. stdev and EM RMS error: 500 hPa geopotential

TIGGE comparison

120

100

% 2 4 6 8 10 12 14
fc-step (d)
—+4—Ens.

—— Ens.

=== Multi-Model
— CMC
—— ECMWF
MetOffice
—— NCEP

Mean RMSE
stdev
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CRPS: 500 hPa geopotential

TIGGE comparison

|
0.9
0.8
0.7
006
ﬁo.s—
0047 == === Multi-Model
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031 —— ECMWF
0.2+ —— MetOffice
0.1 —— NCEP
%

fc-step (d)
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Binary events based on the climate

consider a short lead time ...
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Binary events based on the climate
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Binary events based on the climate

consider a short lead time ...

O<P<1

climate
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Binary events based on the climate
consider an even shorter lead time

§O<P<1

climate

S
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Binary events based on Ens. mean and its error climate

climate
of EM:error
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Binary events based on Ens. mean and its error climate

M. Leutbecher =~ €CECMWF

Ensemble Forecasting Systems



Binary events based on Ens. mean and its error climate
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Binary events based on Ens. mean and its error climate

scales naturally with lead time, expect to be better suited to diagnose skill
of variations in pdf-shape
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Binary events based on Ens. mean and its error climate

scales naturally with lead time, expect to be better suited to diagnose skill
of variations in pdf-shape

can also use CF and climate of CF errors . ..
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An error climatology based on reanalyses and reforecasts

o reforecast started from ERA-40 and operational analyses (reforecasts
from ERA-Interim operational since March 2009)

5 members (CF + 4 PF) = Ens. mean slightly less accurate
9 weeks centred on week of interest

18 years, once weekly = 18 x 9 = 162 errors

errors for climatology computed with ERA-Interim analyses

verification for DJFQ9 with operational analyses
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Probability of different kinds of events
48-hour fc of 850 hPa meridional velocity
valid at 0 UTC on 31 January 2009
P(X > lhelim T Uclim)
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Probability of different kinds of events

48-hour fc of 850 hPa meridional velocity
valid at 0 UTC on 31 January 2009
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Probability of different kinds of events

48-hour fc of 850 hPa meridional velocity
valid at 0 UTC on 31 January 2009

P(X > lhelim T Uclim)

r == =~ >~ 0.95
=G e 038

N = R By & 065
@ g & 035
N @S 02

. . e .~ QU . 0.05

P(x > EM + 0¢y)

M. Leutbecher =~ €CECMWF Ensemble Forecasting Systems September 2009 31 /57



Probability of different kinds of events (2)

48-hour fc of 850 hPa meridional velocity
valid at 0 UTC on 31 January 2009
P(x > EM + 0c,r) and mslp

T 2 A

SN AP
=N
S\

- HE
5 e S —
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Probabilistic scores for new types of events

@ Brier Score: (p — 0)?

M. Leutbecher =~ €CECMWF

&
Ensemble Forecasting Systems



Probabilistic scores for new types of events

@ Brier Score: (p — 0)?

e Logarithmic Score (Ignorance):
—(olog(p")) + (1 — o) log(1 — p(W))), where

n+2/3 2 3M42
pM)(n) = /3 ¢ ,
M+4/3 |3M+4'3M + 4

with n being the number of members predicting the event and M
being the ensemble size. The p("¥)(n) are known as Tukey plotting
position; cf. also Cromwell’s rule and Wilks (2006).
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Probabilistic scores for new types of events

@ Brier Score: (p — 0)?

e Logarithmic Score (Ignorance):
—(olog(p")) + (1 — o) log(1 — p(W))), where

n+2/3 2 3M42
pM)(n) = /3 ¢ ,
M+4/3 |3M+4'3M + 4

with n being the number of members predicting the event and M
being the ensemble size. The p("¥)(n) are known as Tukey plotting
position; cf. also Cromwell’s rule and Wilks (2006).

e ROC-area: fol HdF € [0.5,1], where H and F denote Hit Rate and
False Alarm Rate, respectively.
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Logarithmic Score for x > EM + o,

Gaussian error
climate

Quantile error
climate

EPS

v850hPa, anom.>1 stdev (em-err-clim), Northern Mid-latitudes

Climate,

QuantileClimate

g1
2008120100-2009022800 (90)

0.45

0.4254

0.275+

0.25+

0.2254
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Area under the ROC for x > EM + 04,

v850hPa, anom.>1 stdev (em-err-clim), Northern Mid-latitudes

ROCarea
2008120100-2009022800 (90)

0.75
0.725+

0.525+

03 2 a 6 8
fc-step (d)
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Intermediate Summary: Events relative to EM/CF

@ Overall, scores (BS, IgnS, ROC-area) indicate that EPS has more skill
in predicting variations in pdf shape than climatological error pdf

» However, additional EPS skill tends to be relatively small initially.
> It increases to max typically around t ~ 4 4+ 2d.
» Then, additional skill gradually decreases

@ Similar results for T850, Z500, and also for MAMOQ9, and for
verification with ERA-Interim analyses (not shown)
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> It increases to max typically around t ~ 4 4+ 2d.
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@ Similar results for T850, Z500, and also for MAMOQ9, and for
verification with ERA-Interim analyses (not shown)

@ Initial skill increase consistent with fact that spread-error reliability
improves with lead time
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Intermediate Summary: Events relative to EM/CF

@ Overall, scores (BS, IgnS, ROC-area) indicate that EPS has more skill
in predicting variations in pdf shape than climatological error pdf

» However, additional EPS skill tends to be relatively small initially.
> It increases to max typically around t ~ 4 4+ 2d.
» Then, additional skill gradually decreases

@ Similar results for T850, Z500, and also for MAMO09, and for

verification with ERA-Interim analyses (not shown)

@ Initial skill increase consistent with fact that spread-error reliability
improves with lead time

o Work in progress ...

» What should be expected from a good EPS system?

» Can we get additional insight by using this technique to compare
different ensemble configurations?

» What can we learn from this for ensemble calibration techniques?
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Evaluation of the pdf p(x) of a continuous variable

e Two proper scores

» Continuous Ranked Probability Score (CRPS)
» Continuous Ignorance Score (Clgn$S)

@ Two reference forecasts are considered:
» N(CF, o2 (CF)):

Ascore between EPS and N(CF, ¢2,,) evaluates all moments of pdf
> N(EM, 02, (EM)):

Ascore between EPS and N(EM, ¢2) assesses 2nd and higher
moments of pdf
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Evaluation of the pdf p(x) of a continuous variable

@ Two proper scores
» Continuous Ranked Probability Score (CRPS)
» Continuous Ignorance Score (Clgn$S)

@ Two reference forecasts are considered:
» N(CF,02,(CF)):

yrerr

Ascore between EPS and N(CF, ¢2,,) evaluates all moments of pdf

err

» N(EM, 02 (EM)):

err

Ascore between EPS and N(EM, ¢2) assesses 2nd and higher
moments of pdf

@ What difference should be expected?

» define two kinds of “perfect probabilistic forecast”
» an analytical example

@ Results for the operational ECMWF EPS
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The Continuous Ranked Probability Score

CRPS = Mean squared error of the cumulative distribution Pk

cdf of truth  Py(x) = P(y < x) = H(x — y) (1)
cdf of forecast Pg.(x) = P(xt < x) (2)
CRPS = / (Pre(x) — Py (x))* dx (3)

_ / BS, dx (4)

— (P_fo - P_obs)'2 — (P_fo - P_obs)2 — (P_fo - P_obs)2
1—rt 1—rt 1—rPtc

— P_obs — P_obs — P_obs

08 08 0.8
p 0.6 p 0.6 p 0.6
0.4 0.4 0.4
021 021 021
001 001 001
2 0 1 2 3 4 2 0 1 2 3 4 2 0 1 2 3 4
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The Continuous Ranked Probability Score
CRPS = Mean squared error of the cumulative distribution Pk

cdf of truth Py (x) = P(y < x) = H(x —y) (1)
cdf of forecast Pg.(x) = P(xt < x) (2)
CRPS = / (Pre(x) — Py(x))? dx (3)

_ / BS, dx (4)

— (P_fo - P_obs)'2 — (P_fo - P_obs)2 — (P_fo - P_obs)2
1—rt 1—rt 1—rt

— P_obs — P_obs — P_obs

equal to Mean Absolute Error for a deterministic forecast
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Continuous Ignorance Score

or Continuous Logarithmic Score

Let y denote truth and p the forecasted probability density

ClgnS = —log p(y)

A
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Continuous Ignorance Score
or Continuous Logarithmic Score

Let y denote truth and p the forecasted probability density

CIgnS = —log p(y)
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Continuous Ignorance Score
or Continuous Logarithmic Score

Let y denote truth and p the forecasted probability density

ClgnS = —log p(y)

For a Gaussian forecast N(u,o?), we obtain

oy L = 1)
ClgnS = log(ov2r) + =5
20
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Continuous Ignorance Score
or Continuous Logarithmic Score

Let y denote truth and p the forecasted probability density

ClgnS = —log p(y)

For a Gaussian forecast N(u,o?), we obtain

(y — p)?

ClgnS = log(ov2m) +
202

Mean squared error of reduced centred variable plus
logarithmic penalty term for the spread (o).
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Perfect probabilistic forecasts

@ Usually: skill score =0 = as good as climatology
skill score =1 = perfect deterministic forecast

@ We may still get closer to 1 but will never reach it!
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Perfect probabilistic forecasts

@ Usually: skill score =0 = as good as climatology
skill score =1 = perfect deterministic forecast

@ We may still get closer to 1 but will never reach it!

@ Obs. and model uncertainties +
perturbation growth
characteristics of the
atmosphere impose a lower limit
on the forecast error variance
O'% > 0.
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Perfect probabilistic forecasts

@ Usually: skill score =0 = as good as climatology
skill score =1 = perfect deterministic forecast

@ We may still get closer to 1 but will never reach it!

@ Obs. and model uncertainties +
perturbation growth
characteristics of the

atmosphere impose a lower limit ‘

on the forecast error variance

O'% > 0.
@ Define a perfect probabilistic #

forecast under the constraint

V= a% = constant

(consider a fixed lead time)

A\
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Perfect probabilistic forecasts

@ Usually: skill score =0 = as good as climatology
skill score =1 = perfect deterministic forecast

@ We may still get closer to 1 but will never reach it!

@ Obs. and model uncertainties +
perturbation growth
characteristics of the
atmosphere impose a lower limit
on the forecast error variance
O'% > 0.

@ Define a perfect probabilistic
forecast under the constraint
V= a% = constant

(consider a fixed lead time)

A\
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Levels of perfection

use label t to refer to different valid times of the forecast (lead time fixed)

Perfect dynamic forecast: Perfect flow- and data-dependent variations in
pdf-shape

Pe(x) = pa(x — e, t)
with pg statistically consistent with error of the mean p; for each t,

given average variance E; [ x?py(x, t) = V and mean zero for each t.
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Levels of perfection

use label t to refer to different valid times of the forecast (lead time fixed)

Perfect dynamic forecast: Perfect flow- and data-dependent variations in
pdf-shape
Pe(x) = pa(x — e, t)

with pg statistically consistent with error of the mean p; for each t,

given average variance E; [ x?py(x, t) = V and mean zero for each t.

Perfect static forecast: Constant (or seasonally varying) flow- and
data-independent pdf-shape which is perfect:
pe(x) = ps(x — pue)

with ps statistically consistent with the error of the mean p; in the time-average sense,
and [xpsdx =0, and [ x*’psdx = V.
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An idealized example with Gaussian distributions

Let Ens. Mean error be a random variable distributed according to

X2
p*(X, t) = O’(t 1\/% exp(_20,2(t))

e perfect dynamic forecast: issue pg = N(p¢, o%(t))

o perfect static forecast: issue ps = N(ut,;) with 02 = E.0?(t)
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An idealized example with Gaussian distributions

Let Ens. Mean error be a random variable distributed according to

. 1 x?
p (X> t) = O'(t)\/% exp(_202(t))

e perfect dynamic forecast: issue pg = N(pu¢, 02(t))
o perfect static forecast: issue ps = N(ut,?) with 02 = E.0?(t)

What is the difference in probabilistic scores (CRPS, ClgnS) between the
perfect dynamic forecast and the perfect static forecast?
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Expected value of CRPS

Let y denote the true value of the EM error. We see that the expected
value of the CRPS is

2 _ 9t |_9f 2/ .2
E, CRPS(NO.08hy) = 7% |~ 25+ /2 203/07

0.9 T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0

sigma_f / sigma_t

The CRPS has a minimum value at of = ;. This is not surprising as the
CRPS is a proper score.
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Expected value of ClgnS

Again let y denote the true value of the EM error. The expected value of
the Continuous Ignorance Score is

E, CIgnS(N(0, U,zc),y) = [In(27ro,%) + (O't/O'f)z]

N =

2.01

| - |_perfect

00 05 10 15 20 25 30
sigma_f/ sigma_t

The minimum is again at of = o¢; ClgnS is proper!
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Two particular distributions of variance

Let v = 02 denote the variance
e continuous uniform distribution: v ~ U(v1, v2)

o discrete uniform distribution: v ~ (v — v1) + 30(v — v»)

"

<!
R
<

Introduce dimensionless parameter

Vo — W1

=%

€[0,1]
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Expected CRPS for uniform variance distributions

CRPS ratio:  dynamic forecast / static forecast

1.007

0.95]

(I)I -

I~ i

,0.907

o i

0.85] ‘
] — continuous ‘\\
- -—-discrete |

0-80 T T T T T T T T T !
00 01 02 03 04 05 06 07 08 09 1.0

delta
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Expected CRPS for uniform variance distributions

CRPS ratio:  dynamic forecast / static forecast

1.00

0.95]
(I)I -
I~ i
,0.907
o i
0.85]
] — continuous ‘\
- -—-discrete |
0-80 T T T T T T T T T !
00 01 02 03 04 05 06 07 08 09 1.0

delta

for 48-hour error doubling:
3% (20%) reduction in CRPS = 2-hour (13-hour) gain in lead time
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Expected ClgnS for uniform variance distributions
ClgnS( static forecast ) — ClgnS( dynamic forecast )

0.50

0.40-
0.35-
,0.30-
J,lo.zs—
~0.20
0.15-
0.10
0.05+

45 — continuous
0.45 -—-discrete
/

0.00 f
0.0 0.1
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Expected ClgnS for uniform variance distributions
ClgnS( static forecast ) — ClgnS( dynamic forecast )

0.50
i — continuous
0.45 -—-discrete /
/
/

0.40-
0.35 /
/0.30 /
J,lo.zs— / /
~0.20 /
0.151 -~
0.10- 7
0.051 L -

0.00 s L —
00 01 02 03 04 05 06 07 08 09 1.0

delta
for 48-hour error doubling:
reduction of ClgnS by 0.15 (0.7) = 10-hour (48-hour) gain in lead time
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Dressed ens. mean forecast: v 850 hPa, 35°-65°N, DJFQ09

— EPS raw prob. for CRPS; Gaussian for ClgnS
""" N(EM, Ugrr(EM)) Oerr estimated from reforecasts
CRPS
3
1)
2]
3]
N
v 2 6 [ 12 14
fc-step (d)
oy 3 E z 9ac
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Dressed ens. mean forecast: v 850 hPa, 35°-65°N, DJFQ09

— EPS raw prob. for CRPS; Gaussian for ClgnS
""" N(EM,O'grr(EM)) Oerr €Stimated from reforecasts
CRPS ClgnS

»

N

il

CRPS
b
o o
S @

o
Y

o

. ContinuouslignoranceScoreGaussian
o
>

o
o

6 [ 10 12 14 2 ) [ 8 10 12
fc-step (d) fc-step (d)
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Dressed ens. mean forecast: v 850 hPa, 35°-65°N, DJFQ09

— EPS raw prob. for CRPS; Gaussian for ClgnS

______ N(EM, 02, (EM))

err

CRPS

Oerr €stimated from reforecasts

ClgnS

il

CRPS
b

»

-

4
o

e 9
[N

o

. ContinuouslignoranceScoreGaussian
o
>

o
o

0 2 2 4

6 [
fc-step (d)

[ 8
fc-step (d)

@ T850, Z500, qualitatively similar but ...

@ Deficiencies in the short-range can be
extent).

addressed via calibration (to a certain
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Dressed control forecast: v 850 hPa, 35°-65°N, DJF09

— EPS raw prob. for CRPS; Gaussian for ClgnS
""" N(CF, O‘grr(CF)) Oerr €Stimated from reforecasts
CRPS

ContinuouslgnoranceScoreGaussian
S

6 [ 10 12 14 0 2 3 [ 8 10 12 14
fc-step (d) fc-step (d)
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Diagnosis & Numerical Experimentation

Initial uncertainty

@ Deeper understanding from applying diagnostic techniques to clean
numerical experimentation designed to answer specific questions

M. Leutbecher =~ CCECMWF Ensemble Forecasting Systems September 2009 50 / 57



Diagnosis & Numerical Experimentation

Initial uncertainty

@ Deeper understanding from applying diagnostic techniques to clean
numerical experimentation designed to answer specific questions

@ In the early ranges, say up to day 2, EM dressed with a climatological
error distribution as good as or better than EPS.
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Diagnosis & Numerical Experimentation

Initial uncertainty

@ Deeper understanding from applying diagnostic techniques to clean
numerical experimentation designed to answer specific questions

@ In the early ranges, say up to day 2, EM dressed with a climatological
error distribution as good as or better than EPS.

e If CF/EM + past errors provide skilful probabilistic forecasts, then
one may ask whether past errors might be a successful EPS
perturbation strategy
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Flow-independent perturbations

@ Mureau, Molteni & Palmer (1993)
> initial perturbations based on 6-hour forecast errors from past 30 days
& Gram-Schmidt-orthonormalisation

» assimilation Ol
» model T63
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Flow-independent perturbations

@ Mureau, Molteni & Palmer (1993)
> initial perturbations based on 6-hour forecast errors from past 30 days
& Gram-Schmidt-orthonormalisation

» assimilation Ol
» model T63
» conclusion: SV perturbations are superior

e Magnusson, Nycander & Kallén (2008): flow-independent perts.
constructed from scaled differences of randomly picked atmospheric

states.
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@ Mureau, Molteni & Palmer (1993)
> initial perturbations based on 6-hour forecast errors from past 30 days
& Gram-Schmidt-orthonormalisation
» assimilation Ol
» model T63
» conclusion: SV perturbations are superior
e Magnusson, Nycander & Kallén (2008): flow-independent perts.
constructed from scaled differences of randomly picked atmospheric
states. Initially quite overdispersive in Z500, but skill close to
ensemble using operational SV perturbations.
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Flow-independent perturbations

@ Mureau, Molteni & Palmer (1993)
> initial perturbations based on 6-hour forecast errors from past 30 days
& Gram-Schmidt-orthonormalisation
» assimilation Ol
» model T63
» conclusion: SV perturbations are superior
e Magnusson, Nycander & Kallén (2008): flow-independent perts.
constructed from scaled differences of randomly picked atmospheric
states. Initially quite overdispersive in Z500, but skill close to
ensemble using operational SV perturbations.

@ Here: use random sample from past 24-hour forecast errors as initial
perturbations (advantage: characteristics of short-range fc errors are
closer to those of analysis errors than scaled differences of full fields)
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Time mean spread vs. RMSE of Ens. mean
Meridional wind component (ms™') at 850 hPa, t=48 h

singular vector init. perts. 24-hour fc. error init. perts.
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Time mean spread vs. RMSE of Ens. mean
Meridional wind component (ms™') at 850 hPa, t=48 h

singular vector init. perts. 24-hour fc. error init. perts.

- 0.5
top: ens. stdev.; bottom: ens. mean RMS error; 50 cases: 23 Nov '07-29 Feb '08
T.255, 32r3, unscaled 24-hour FCEs
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CRPS difference: FCE — SV

Meridional wind component (ms™') at 850 hPa, t=48 h

-0.15

-0.2

-0.25

-0.3

-0.35

-0.3771

-0.4

@ CRPS (Continuous Ranked Probability Score = mean squared error of the
cumulative distribution)

@ Blue means EPS based on short-range forecast errors is more skilful.
@ 50 cases: 23 Nov 2007 — 29 Feb 2008
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Spread-reliability

850 hPa temperature, 35°—65°N

t850hPa, t=+24h, N.hem.mid t850hPa, t=+48h, N.hem.mid
N50/2007112300T0O2008022900 N50/2007112300T02008022900

MS error (K
S
*

R
o
@

0.4

0.2

N

RMS error (K)

—

02 04 06 08 1 12 14 16 i

M. Leutbecher

2
RMS spread (K) RMS spread (K)

—+—SV (oper)

=== = FCE24 x 1.00
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Conclusions

@ Comparison of Spread and EM-error continues to be an essential tool

» Have not achieved a well tuned system for all variables and regions.
» Achieving a reliable distribution of spread in space and time in the early
forecast ranges is one of the major challenges for the future.
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evaluate flow- and data-dependent variations in spread.
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Conclusions

@ Comparison of Spread and EM-error continues to be an essential tool
» Have not achieved a well tuned system for all variables and regions.
> Achieving a reliable distribution of spread in space and time in the early
forecast ranges is one of the major challenges for the future.

@ Moment-based decomposition of the ensemble skill has been explored
» Skill of Ens. mean + skill of pdf of Ens. mean errors

» Continuous Ignorance Score appears better suited than CRPS to
evaluate flow- and data-dependent variations in spread.

@ Initial perturbations based on past short-range forecast errors

» — challenging benchmark for flow-dependent initial perturbations (e.g.
singular vectors).

» Rare locally large perturbations that are inconsistent with the flow may
be an obstacle for operational implementation of the benchmark
system.

» Further diagnostic work in this area is expected to help the development
of ensemble prediction system with improved flow-dependent variations
of the pdf (in particular in the earlier forecast ranges).
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Issues to verify “initial uncertainty”

@ truth not available

@ short-range fc error correlated with analysis error — require obs (or
perhaps an independent analysis)

@ obs uncertainty/analysis uncertainty needs to be accounted for if
ensemble spread is smaller than or of similar magnitude as the obs/an
uncertainty.
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Multivariate verification

@ Why? Ensemble of assimilations should provide a varying background
error covariance to the assimilation system. One should attempt to
verify the flow-dependent covariances.

@ There are user applications that will be dependent on the joint pdf of
several variables (e.g. distributed in space or several variables).
Implications for suitable ensemble size can be different from
univariate case.
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