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Two satellites in true polar orbit

Launch: ~2015

Mission concept review: February 2010

Project Scientist: Dave Young

Science Team Lead: Bruce Wielicki
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Outline

•

 
CLARREO and testing climate models

–

 

Climate benchmarking and climate benchmark data types

–

 

Information content: Scalar prediction

–

 

Requirements on accuracy

•

 
Climate benchmark 1: Radio occultation

–

 

The sounding technique and its traceability

–

 

Retrieval

–

 

Information content

•

 
Climate benchmark 2: High-resolution infrared spectra

–

 

Information content

–

 

Joint RO and IR information content

•

 
Summary and discussion
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Climate Benchmarks

•

 

CLARREO = Climate Absolute Radiance and Refractivity Observatory

•

 

“Accurate in perpetuity”

 

= Data can be used by all future generations with or without 
gaps in timeseries

•

 

“International standards”

 

= SI traceability, certainty that you’ve measured what you said 
you measured

•

 

“Tested against independent strategies that reveal systematic error”

 

= Determine error 
bars empirically

•

 

“Mathematically rigorous techniques”

 

= Bayesian methods, optimal detection

“CLARREO addresses three key societal objectives: 1) the essential responsibility to present 
and future generations to put in place a benchmark climate record that is global, accurate in 
perpetuity, tested against independent strategies that reveal systematic errors, and pinned to 
international standards; 2) the development of an operational climate forecast that is tested 
and trusted through a disciplined strategy using state-of-the-art observations with 
mathematically-rigorous techniques to systematically improve those forecasts to

 

establish 
credibility; and 3) disciplined decision structures that assimilate accurate data and forecasts 
into intelligible and specific products that promote international commerce as well as societal 
stability and security.”

― The NRC Decadal Survey of NOAA and NASA, 2007



7-10 September 2009 Leroy: Radio occultation uses 5

SI Traceability

Source-based traceability:

 

Reproduce the unit of the observation by means of 
physical laws (e.g., blackbodies & Planck equation)

Detector-based traceability:

 

Reproduce the definition of the unit by means 
other than that of operational observation (e.g., electrical substitution)

The International Vocabulary of Basic 
and General Terms in Metrology (ISO 
1993):

6.10  Traceability

Property of the result of a measurement or the 
value of a standard whereby it can be related to 
stated references, usually national or 
international standards, through an unbroken 
chain of comparisons all having stated 
uncertainties.
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Interruptions in record
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Interruptions in record, resolved
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Information content: “Climate OSSE”

Benchmark 
Measurement

• Traceable to 
international standards

• Minimize sampling 
errors, systematic and 
random

Climate 
Uncertainty

• Shortwave forcing

• Longwave forcing

• Climate feedbacks & 
sensitivity

Climate OSSE

• Simulate trends in 
observable as 
produced by different 
models

• Explore information 
content for various 
climate scalars

Climate OSSE Results
• Detection time and accuracy requirements

• How measurement constrains climate predictability

• Relative redundancy with other benchmark data types
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Scalar detection

•

 

Find underlying trends in arbitrary “climate”

 

variables given climate 
benchmark data

•

 

Confidence levels must reflect influence of natural variability and 
inability to relate observations and climate variables (model 
uncertainty).

•

 

Connect to optimal detection and attribution work.

•

 

Solution:

 

Two levels of Bayesian inference. 
1)

 

Inference for trends in climate variable conditioned on a single

 

model,

2)

 

Inference for most probable model in an ensemble of climate models. 
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First level of inference

Solve for trends in climate scalar, no prior
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First level of inference
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Second level of inference

Weight posterior P(dα/dt

 

| dd/dt)

 

by evidence for data and model 
P(dd/dt

 

| Mi

 

)

 

for an ensemble of models, and sum over models.
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Scalar prediction: Examples
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Requirements on accuracy

αα dddtd/dtd dtd /
2

/ )( gnd ΣΣΣΣ ++=

nnτστσ 2
obs

2
obs <<

Accuracy requirements are directly related to natural variability 
in observation space. You don’t want inaccuracy to augment 
detection times too much more than natural variability already 
does.

Longer missions generally require more stringent accuracy 
requirements.

Accuracy requirements completely unrelated to expected 
trends!

Leroy, Ohring, Anderson, 2009: J. Climate.
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Optimal fingerprinting: Conclusions

•

 
Optimal fingerprinting is the same as variational

 assimilation, but
–

 

Observations are long-term changes in observable

–

 

No prior (forecast, background)

–

 

Forward operator is model-projected climate change

•

 
Scalar prediction

–

 

Relates trends in accurate data types to a projected trend in a user-

 selected scalar

–

 

Weights against natural variability and uncertainty in relationships
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GNSS Radio Occultation
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GNSS Radio Occultation (2)

•

 
Orbit determination and clock correction, GPS and 
LEO: dL/dt

•

 
Diffraction (and multipath) inversion: ε(p)

•

 
Inversion for refractivity: N(r)
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Kursinski, E.R., G.A. Hajj, J.T. Schofield, R.P. Linfield, and K.R. Hardy, 1997: Observing Earth’s atmosphere 
with radio occultation measurements using the Global Positioning System. J. Geophys. Res., 102, 23429- 
23465. 

Hajj, G.A., E.R. Kursinski, W.I. Bertiger, L.J. Romans, and S.S. Leroy, 2002: A technical description of 
atmospheric sounding by GPS occultation. J. Atmos. Solar-Terr. Phys., 64, 451-469. 

Gorbunov, M.E., H.H. Benzon, A.S. Jensen, M.S. Lohmann, and A.S. Nielsen, 2004: Comparative analysis of 
radio occultation processing approaches based on Fourier integral operators. Radio Sci., 39, 
doi:10.1029/2003RS002916. 
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GNSS Radio Occultation (3)

•

 

Refractivity

•

 

“Dry”

 

pressure

•

 

Geopotential

 

height
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Radio occultation products
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Radio occultation products
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Calibration: Double Differencing

Hardy, K.R., G.A. Hajj, and E.R. Kursinski, 1994: Accuracies of atmospheric profiles 
obtained from GPS occultations. Int. J. Sat. Comm.,

 

12, 463-473.
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Verifying a Benchmark

•

 
Reproducible standards:

 
An SI traceable observable 

should be reproducible by anyone, anywhere, anytime. 
–

 

Test: Collocated radio occultation soundings from independent 
satellites should produce identical measurements to within 
observation error. If not, there is an unaccounted break in SI 
traceability.

•

 
Accurate trend reproduction:

 
Uniform application of a 

retrieval algorithm should produce an accurate trend.
–

 

Test: Measure trends in refractivity as produced by independent 
retrieval centers. Disagreement indicates poorly understood 
uncertainty or poorly understood data type. 
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Verifying a Benchmark: Test 1

Reproducibility: Comparing CHAMP to SAC-C

Hajj et al., J. Geophys. Res.,

 

2004.

Possible break in traceability?
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Verifying a Benchmark: Test 2

Robust trends
Ho et al., J. Geophys. Res.,

 

In Press.
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Verifying a Benchmark: Conclusions

•

 
RO is a strong benchmark ( < 0.1 K ) in its sweet spot, 8-20 
km. Apparent break in traceability in the stratosphere, 
possibly due to local multi-path in either CHAMP or SAC-C.

•

 
RO is a strong benchmark in its sweet spot, with four 
independent centers producing identical trends in 
refractivity. Not to be considered statistically significant 
climate trends!
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GNSS RO Dry Pressure Tendency

Leroy et al., J. Geophys. Res.,

 

2006.
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Dry Pressure EOFs

ENSO

Southern Annular Mode

Northern Annular Mode

Symmetric Jet Migration 
(lagged response to ENSO)
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First level of inference

Solve for trends in climate scalar, 
no prior
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Decomposing Optimal Detection

Open diamonds: Natural variability 
eigenvalues

Filled squares: Signals’

 

projections onto 
EOFs

12 models for signal shape s

4 models prescribe natural variability N

The higher the filled squares are with 
respect to the eigenvalues, the more that 
mode will contribute to detection (and 
increase the SNR).
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Optimal fingerprints
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Detection times

Model GFDL CM2.0

(yrs)

ECHAM5/MPI-

 

OM

(yrs)

UKMO-HadCM3

(yrs)

MIROC3.2 
(medres)

(yrs)

Tropospheric

 

Expansion

(m decade-1)

GFDL-CM2.0 8.67 9.05 8.29 6.63 11.02

GFDL-CM2.1 7.88 8.65 7.57 6.21 12.86

GISS-AOM 10.53 11.54 10.47 8.38 9.67

GISS-EH 10.41 11.74 10.77 8.50 9.12

GISS-ER 10.89 12.70 11.07 9.32 8.79

INM-CM3.0 9.98 11.23 9.79 8.15 10.71

IPSL-CM4 9.29 10.02 8.95 7.36 10.54

MIROC 3.2 
(medres)

7.09 7.47 6.83 5.39 13.04

ECHAM5/MPI-OM 7.78 8.16 7.45 5.87 12.34

MRI-CGCM2.3.2 9.95 11.70 9.92 8.35 10.68

CCSM3 8.87 9.62 8.68 6.80 11.97

PCM 12.69 12.32 11.95 8.45 7.27
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How Does GNSS RO Test GCMs?
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GNSS RO Accuracy Requirements

90 60 30 0 -30 -60 -90
Latitude

0

20

40

H
ei

gh
t [

km
]

0.0

0.1

0.2

0.3

R
ef

ra
ct

iv
ity

 R
eq

ui
re

m
en

t [
%

]



7-10 September 2009 Leroy: Radio occultation uses 35

Nonoptimal
 

Trends

Ringer and Healy, Geophys. Res. Lett.,

 

2008.
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Climate trends: Summary

•

 
First signal to emerge is poleward migration of baroclinic

 zones. Possibly jet streams as well. Detection time is ~ 10 
years, corresponding to a 10-m thickening of troposphere.

•

 
Trends in bending angle have similar detection times but 
first detect expansion of tropical troposphere.

•

 
Relating RO data to surface air warming yields a very 
different optimal fingerprint.
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Spectral thermal infrared
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Thermal infrared spectra fingerprints
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Thermal infrared spectra fingerprints
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Cumulative Signal
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Leroy et al., J. Climate,

 

2009b.
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Applied Scalar Prediction (2)
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Climate Feedback

1
LWSW

rad

LWSW
rad

−

⎥
⎦

⎤
⎢
⎣

⎡
−−ΓΔ=Δ

ΔΓ=Δ+Δ+Δ

∑∑

∑∑

ii

ii

ii

ii

FT

TTTF

γγ

γγ

dT
dx

x
F

dT
dx

x
F

i

i
i

i

i
i

∂
∂

=

∂
∂

=

LW
LW

SW
SW

γ

γ

Radiative forcing ΔFrad

Longwave cooling Γ ΔT

Amplification or suppression of greenhouse effect, γ ΔT



7-10 September 2009 Leroy: Radio occultation uses 43

Feedback Uncertainty

Bony, S., et al., 2006: How well do we understand and evaluate climate change 
feedback processes? J. Climate,

 

19, 3445-3482.
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Longwave feedbacks: Clear sky

•

 

From Cloud Feedback Model 
Intercomparison

 

Project 
(CFMIP)

•

 

Spectral fingerprints from 
equilibrium doubling of CO2

•

 

Spectral fingerprints 
computed by partial radiative 
perturbation (PRP)

•

 

First, clear-sky fingerprinting; 
then, all-sky fingerprinting

•

 

Discover whether we have 
enough information in 
“absolute”

 

data to constrain 
radiative feedbacks and 
ultimately equilibrium 
sensitivity.
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Longwave feedbacks: Clear-sky (2)

Longwave response to 
doubling of CO2

 

, W m-2

Longwave feedback 
components, W m-2

Yi Huang et al., J. Geophys. Res.,

 

In Review.
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Longwave feedbacks: All-sky
Clear-sky fingerprints
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Longwave feedbacks: All-sky (2)

Longwave response to 
doubling of CO2

 

, W m-2

Longwave feedback 
components, W m-2
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All-sky degeneracies

Degenerate signals: It is difficult to identify unambiguously some pairs of 
feedbacks because the convolution of climate response with observation forward 
model produces signatures that can be very similar.
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All-sky degeneracies

Global mean 
OLR change

PRP
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Joint infrared-radio occultation information?

Degenerate signals: It is difficult to identify unambiguously some pairs of 
feedbacks because the convolution of climate response with observation forward 
model produces signatures that can be very similar.

Information provided by radio 
occultation, insensitive to clouds…
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Monitoring the infrared spectrum: Summary

•

 
Clear sky: Information content clearly constrains the 
longwave radiative feedbacks of the climate.

•

 
All-sky: Information content can constrain longwave 
radiative feedbacks but with ambiguities

•

 
Detection times for regional feedbacks too long to be of 
use. Optimization in spatial dimension should yield more 
useful detection times. 

•

 
Jointly considering GNSS RO and infrared spectrum 
information content should resolve ambiguities in 
longwave feedbacks.
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Summary and discussion

•

 

Climate benchmarking provides a way to monitor climate that is insensitive to 
breaks in time series. 

–

 

Must be accomplished through traceability to international standards.
–

 

Accurate reproducibility
–

 

Trends independent of retrieval algorithm
•

 

Climate projection: Important diagnostics for climate projection

 

depend on 
the “climate scalar”

 

of interest
–

 

Regions (components) of low natural variability
–

 

Regions (components) that have well understood relationships to climate scalar of 
interest

•

 

Detection times are 10-14 years. Optimization in space probably necessary for 
strong tests of climate models.

–

 

GNSS RO sees poleward migration of baroclinic

 

zones in first detection
–

 

Thermal infrared spectra provide information for direct determination of longwave 
feedbacks (half of equilibrium climate sensitivity). GNSS RO can

 

enable resolution 
of longwave feedback ambiguities.

•

 

Ultimately, data will be assimilated into reanalyses. Must assure that 
climate benchmark data anchors the reanalysis so that inferred long-term 
trends in geophysical variables reflect advantages of climate 
benchmarking.
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