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OUTLINE

• Why do we need an adjoint model and what is it?

• Easy non-trivial example

• Difficulties in developing adjoint models

• Applications for atmospheric/ocean models
- ‘sensitivity calculation’
- singular vectors
- other use, i.e. not ‘initial condition’ related
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Many thanks to:
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• Ron Errico
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• Martin Leutbecher
• Andy Moore
• Frank Selten
• Florian Sevellec
• Gerard van der Schrier
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Special guests: E. Lorenz (2002) and G.I. Marchuk (2004)



5

Special guests: E. Lorenz (2002) and G.I. Marchuk (2004)

Application of adjoint equations to virus infection modelling
(Marchuk et al., 2005).
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Why is an adjoint model useful?

Suppose we are dealing with a nonlinear model M of the form:

y=M(x)

and a differentiable scalar J defined for model output fields y :

J=J(y)=J(M(x))

Dependence of  J on y is often straightforward, 

but determining            seems impossible for high-dimensional models. 

It would require perturbed model runs for every (~108 ) entry of x.         

xJ ∂∂ /
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Example 0: Sensitivity calculation
(method to improve a forecast retrospectively)

y=M(x)

x=analysis1 analysis2

perturbed analysis1

J
?

J(x)=[y-analysis2,y-analysis2], with [.,.] a suitable inner product

See: Rabier et al. (1996), Klinker et al. (1998), ……
,…, Isaksen et al. (2005), Caron et al. (2006),…

(J=0)

How to minimize J ?
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How to determine MT ?

Assume that the linear model describing the evolution of 
initial time perturbations has the form

(1) dε/dt = Lε

with propagator M:  ε(t2)=M(t1,t2) ε(t1)

Define the adjoint model by

(2) dε/dt = -LTε , with [La,b] = [a,LTb],

with propagator S and where [.,.] is a suitable inner product.

N.B. Adjoint model depends on chosen inner product [.,.].
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Solutions a(t) and b(t) of (1) and (2) respectively satisfy the 
property:

d/dt [a(t),b(t)]=[La(t),b(t)]+[a(t),-LTb(t)]=0

and consequently 

[M(t1,t2)a(t1),b(t2)]=[a(t1),S(t2,t1)b(t2)]

M(t1,t2)
T= S(t2,t1)

YES!

a(t1)       M(t1,t2)a(t1)

S(t2,t1)b(t2)     b(t2)
time

How to determine MT ?  (2)

Gradient J can be determined efficiently by running the 
adjoint model (2) backwards in time!
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Adjoint of barotropic vorticity equation (BVE)
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One of the components of the linearised BVE reads as:

Use inner product defined by:  

and thus                                           (N.B.                )  

, with

),~(Jac~* ψεε Δ−=L -1* LL ≠
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While developing the SL2TL adjoint …..

THE ADJOINT BLUES



13

Linear vs. nonlinear model 

• More elaborate physics in linear models, as nonlinear model
is growing increasingly complex/realistic.

(see Marta Janiskova’s  contribution to 2003 ECMWF seminar)

- ensemble forecasting (e.g. in the tropics, tropical cyclones)
- investigate physics driven instability mechanisms
- data-assimilation of variety of data types (e.g. radar)

• Not straightforward to check the correctness of linear models.
(e.g., by comparing difference between two nonlinear runs and

the outcome of a linear run) 

• Possibility to trigger unwanted instability mechanisms.
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Spurious perturbation growth in the tropics

linear run             nonlinear (difference of 2 runs)

Excessive growth
in the lower
stratosphere



15

Example 0: Sensitivity calculation
(how to improve a forecast retrospectively)

y=M(x)

x=analysis1 analysis2

perturbed analysis1

J
?

Minimize cost function J :

J(x)=[y-analysis2,y-analysis2], with [.,.] a suitable inner product

(J=0)
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(Isaksen et al., 2005)

Example 0: Sensitivity calculation (contnd)

Be careful with the
interpretation of
‘key analysis errors’

For example, see
ECMWF 2003 Seminar

Isaksen: Realism of 
sensitivity patterns.
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Example 1: Periodic weather.
Unstable Periodic Orbits (UPO) can be used to describe certain 
characteristics of the ‘climate attractor’ efficiently.

Define a cost function J by:  J (x(0))=1/2 || x(0)-x(T) ||2 ,
with ||.|| the Euclidean norm. 

The gradient of J is given by:

(0))-(T)]([ T xxJ IdM −=∇

UPO.x(0)
x(T)
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original initial condition

and after minimization

head and tail of UPO
Unstable Periodic Orbit
(period is 10 days)

Streamfunction at 500 hPa
in a T21L3 Quasi-Geostrophic model
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Periodic weather



20

Almost all data points lie close to a small set of UPO’s 

Points on the attractor                                      not close to a UPO

(Gritsun and Branstator, 2007)UPO
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Example 2: Upwelling

• Decadal variations in California Current Upwelling Cells
(Chhak & Di Lorenzo, 2007)

• Model: Regional Ocean Modeling System (ROMS)
(Moore et al., 2004)

• Potential mechanisms for the  sharp decline in zooplankton
biomass off the coast of California after the mid ‘70s
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Pacific Decadal Oscillation (PDO)
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Cold phase: deeper
source of upwelled,
nutrient rich water.

Supported by 
observations of
phytoplankton  &
zooplankton

Passive tracer introduced mid-April each year (55 yrs); adjoint run for 1 yr

Origin of upwelling water (%) 1 yr prior to following year upwelling max.
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Example 3: Sensitivity in surface precipitation
for 2 convection schemes

(Mahfouf and Bilodeau, 2007)

• costfunction  J is mean surface precipitation over a selected domain
• relative importance of u,v,T,q and ps depends on convection scheme   

start of adjoint model integration



25 (Lewis, 2005)

SINGULAR VECTORS

If more realistic models with many thousands 
of variables also have the property that a few of 
the eigenvalues of ATA are much larger than the 
remaining, a study based upon a small 
ensemble of initial errors should give a 
reasonable estimate of the growth rate of 
random errors … It would appear then, that the 
best use could be made of computational time 
by choosing only a small number of error fields 
for superposition upon a particular initial state 
…(Lorenz 1965)
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Perturbations ε of the initial condition that maximize the ratio
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where M is the propagator of the tangent linear model and C and E
define a perturbation norm at initial and final time respectively.

- Popular choice: C=E= ‘total energy’ norm

- Other choice for C: Hessian norm
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Equivalently, Hessian singular vectors (HSV) satisfy:

MTEM ε = λ A-1ε    

Solvers exist, even when M and A are not known explicitly

Note that 
(E1/2MA)MTEM ε = λ(E1/2 MA)A-1ε

or
E1/2 (MAMT) E1/2 E1/2 M ε = λE1/2M ε

so

time-evolved HSVs E1/2M ε are eigenvectors of E1/2(MAMT) E1/2
,

which is the forecast error covariance matrix in the E-norm
(Observe MAMT= M δδΤ MT= Mδ (Mδ)T )
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Analysis error variance field for temperature at 500 hPa

Hessian singular vectors know about this:

higher analysis
uncertainty
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(Barkmeijer et al., 2000)

• reduced growth (50%) for HSV’s in terms of total energy.
• potential (kinetic) energy dominant for initial TE (Hessian) SVs
• no energy for wave number >25 in case of HSV without observations
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(Lawrence et al., 2009)

TE                                   HSV no OBS                    HSV

T=0h

T=48h

T=48h

pe keke pe
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The Observing System 
Research and 
Predictability Experiment 
(THORPEX)

To improve weather forecasts by collecting observations in 
data-sensitive locations where analysis errors would have the largest 
impact on the forecast for a specific event or region of interest

One of the objectives:
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data-sensitive areas

(Gelaro et al., 2002)

TESV

VARSV

case 1                                     case 2
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Example 2: Sea Surface Salinity SVs

• Optimal surface salinitiy perturbations for the Meridional Overturning
Circulation (Sévellec et al., 2008)

• Final norm measures (northward) mass transport at 48oN in 
the Atlantic

• Model: OPA and OPA Tangent Adjoint Model 
(OPATAM, Weaver et al., 2003)

• Estimate the influence of sea surface salinity (SSS) perturbations 
on the North-Atlantic circulation as suggested by observations and 
modeling studies.
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Optimal SSS Perturbation
(scaled to 1 psu amp.)

• Upper bounds based on GSA:
~0.8 Sv (11% of mean)

• SST perturbation less optimal:
5oC required to achieve SSS impact

MOC Growth 
factor

ΔMOC
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Example 3: Stratosphere-Troposphere interaction

Look for structures ε that originate in the stratosphere and grow in the
stratosphere or (lower) troposphere, by using appropriate projection
operators Pini and Pevo.

><
><

εε iniini

inievoinievo

 ,  
, 
PP

MPPMPP εε

100 hPa -------

500 hPa -------

Stratosphere SVs: S-SV

Stratosphere-Troposphere SVs: ST-SV

Pini
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ST-SVs  

Downward propagating structures
are possible even during summer
conditions

Energy distribution below 500 hPa
of linearly evolved ST-SV at T=120h



37

Example 4: Tropical singular vectors

• Case: Tropical cyclone Helene (September 2006)
as seen from space shuttle Atlantis 

resolution T42                                             T159

(Courtesy of S. Lang)
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• Target area is entire tropical strip 30oS – 30oN !
• Tropical cyclone Helene shows up in the leading SVs

T=0h

T=48h
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Forcing
The regular SV and Sensitivity calculation can be exploited for studying 
model uncertainty. Assume error evolution is given by

)(f  t
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Together with the corresponding adjoint N* 

forcing singular vectors/sensitivity can be determined.
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The Reynolds system

Assume error dynamics is governed by a stable 2x2-matrix A

and further subject to a forcing f(s):

dε/dt = Aε + f(t)

Look for Forcing Singular Vectors FSV, which maximize

(Nf , Nf) for unit-sized f and Nf = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2-0
101-
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 d )(f),( sstsM
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(Farrell and Ioannou, 2005)

Components of the leading FSV for the Reynolds system using
an optimization time of 4 units.
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Size of the perturbation at optimization time
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0h 24h 48h 0h 24h 48h

Tendency perturbations in the sensitivity calculation

OR

Use N and its adjoint N* (instead of M and M*) to determine a constant
tendency perturbation (forcing) f, which decreases the forecast error, or
equivalently, minimizes the following cost function:

J=<fc-an+Nf , fc-an+Nf>

regular forcing
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Temperature perturbations at
700 hPa     

default sensitivity
(T=0h)

forcing sensitivity
(constant during 48-h forecast)
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T500 impact at forecast time T=48h

forcing

default

2-day forecast error
temperature   500 hPa
contour interval 1K
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(Barkmeijer et al., 2003)
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Example 1:  Increasing the Atlantic subtropical jet

• Determine every 72 hours an atmospheric forcing, which increases the 
Atlantic subtropical jet

• Apply this forcing in a coupled atmosphere-ocean model
• Run the coupled model for 10 years

yearday

Je
t 

S
tr

e
a
m

 I
n

d
e
x

FORCED

CONTROL
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(Van der Schrier et al., 2007)

control

forced

• Subtropical jet more zonal
in the forced run

• Atmospheric meridional heat 
transport over the North Atlantic
is reduced 
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Resulting in a cooling over the Atlantic in the forced run.

Change in surface temperature for the forced run compared to the control run
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Adjoint models have been very useful 
and instructive in understanding 
ocean and atmospheric models!

Thank you for your attention
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Stratospheric forcing with the ECMWF model

• Apply a forcing F to the model tendency 
• Forcing F is constructed to change the strength of the 

stratospheric polar vortex (18 sensitivity calculations). 
• Perform 60 forty-day T95L60 integrations during 

DJF 1982-2001 with

dx/dt=EC(x), dx/dt=EC(x) + F and dx/dt=EC(x) - F

• Forcing F is small and zero below 150 hPa 
• and F is kept constant during the integration

Jung and Barkmeijer (2006)
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Stratospheric Response (50hPa) Weak-Ctl

Vortex Collapse

D+1-D+10 D+11-D+20

D+21-D+30 D+31-D+40
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Z1000 Response (Weak-CTL)

D+1-D+10 D+11-D+20

D+21-D+30 D+31-D+40
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