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1. Under this approximation, the system responds linearly to external forcing, and the
prediction of a future state, given an initial state, is a linear prediction

2. The approximation is surprisingly good, and very useful for both diagnosis and prediction

3.     It can also be reconciled with the existence of non-Gaussian PDFs,  by making  B  a linear
function of  x

This talk is mostly based on a paper by Sardeshmukh and Sura  (Journal of Climate, March 2009)

Thanks also to  Barsugli, Compo, Newman, Penland, and Shin

dx
dt

  =   A x  +    fext +   B η  
x        =   N-component anomaly state vector
η        =  M-component gaussian noise vector
fext(t)  =   N-component external forcing vector
A(t)    =   N x N matrix
B(t)    =   N x M matrix



dx
dt

  =   A x  +    fext +   B η  

Supporting EvidenceSupporting Evidence

- Linearity of coupled GCM responses to radiative forcings

- Linearity of atmospheric GCM responses  to tropical SST forcing

- Linear dynamics of observed seasonal tropical SST anomalies

- Competitiveness of linear seasonal forecast models with global coupled models

- Linear dynamics of observed weekly-averaged circulation anomalies

- Competitiveness of Week 2 and Week 3 linear forecast models with NWP models

- Ability to represent observed second-order synoptic-eddy statistics

      The Linear Stochastically Forced (LSF) Approximation

x        =   N-component anomaly state vector
η        =  M-component gaussian noise vector
fext(t)  =   N-component external forcing vector
A(t)    =   N x N matrix
B(t)    =   N x M matrix



           Seasonal Predictions of Eastern Tropical Pacific SSTs at NCEP

           Skill Comparison of   Nonlinear GCMs               (CFS,  CMP14)
                                         and   Linear empirical models   (CCA, CA, CONS, MARKOV)

The simple linear
empirical models are
apparently just as good
at predicting  ENSO

as are the

“state of the art”
coupled GCMs

(From Saha et al, 2006)
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BASIC POINT: The nonlinear NCAR/CCM3 atmospheric GCM’s responses to
prescribed global SST changes over the last 50 years are well -approximated by
linear responses to just the Tropical SST changes, obtained by linearly combining
the GCM’s responses to SSTs in the 43 localized areas shown above.

    

DOMINANCE and LINEARITY of Tropical SST influences on global climate variability

Sardeshmukh, Barsugli and Shin 2009

 

Local correlation of annual mean “GOGA” and “Linear TOGA” responses



Math1

In LSF models,  the nonlinear terms are not ignored   

They are approximated as stochastic noise 

 Linear Anomaly Model of departures  x = X − X   of  X  from some background state X

 dx
dt

≅ Ax + fext + Bη       A(t)  and  B(t)  are matrices;    fext (t) and η  are vectors

  The first- and second-moment equations for such models are :

 

d
dt
< x >  =   A < x >  +   fext                           C(τ ) =  < x(t + τ ) xT (t) >    

d
dt

 C(0)   =   A C(0)   +   C(0) AT   +    BBT  +   < x > fext
T   +   fext< xT >

 

                                                                                                  Linear Inverse Modeling (LIM)   

 

If   A and B are constant and fext  =  0,   then
< x >   =  0
C(τ )    =  eAτ  C(0)                                   FDR -1 
  0       =   A C(0) +  C(0) AT  +   BBT    FDR - 2  

x(t + τ ) =   eAτx(t) +  noise                   
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A can be estimated empirically from FDR -1 :  
either using   C(τ 0 ) =  eAτ0C(0)   for some τ 0

or using           A−1   = −  C(τ ) C(0)−1dτ   
0

∞

∫
B can then estimated from FDR - 2    

                                                                                           (See Penland 1989, Penland and Sardeshmukh 1995)



Decay of lag-covariances of weekly anomalies is consistent with linear dynamics

 

  dx
dt

   =   A x  +   B η  

 
C(τ ) =  < x(t + τ )xT (t) >
C(τ ) =  eAτ  C(0) 

  

A is first estimated using the
observed C(τ = 5 days) and C(0) 
in this equation, and then used
to "predict"  C(τ = 21 days)

The components of the anomaly
state vector x include the 7-day 
running mean PCs of 250 and 750 mb
streamfunction, SLP, tropical diabatic
heating and stratospheric height anomalies. 

From Newman and Sardeshmukh
(J. Climate 2008)



For wintertime
Week 3

Forecasts
 of 250 mb 

streamfunction

From
Newman et al

2003

An example of the usefulness of LIM

The singular vectors of the empirically estimated G(τ) = exp(Aτ) operator
can help identify relatively more skillful cases a priori . . .

Expected and
actual pattern
correlation skill of
Week-3 N.H.
forecasts,
stratified by initial
state projections
on the right
singular vectors of
G (τ=21 days)



Observed and Simulated Spectra of Tropical SST Variability are

basically Red Noise spectra

Spectra of the projection of tropical SST
anomaly fields on the dominant pattern (1st
EOF) of observed monthly SST variability
in 1950-1999.

Observations (Purple)

IPCC AR4 coupled GCMs
(20th-century (20c3m) runs)
(thin black, yellow, blue, and green)

A linear inverse model (LIM) constructed
from 1-week lag covariances of weekly-
averaged  tropical data in  1982-2005
(Thick Blue)

Gray  Shading :
 95% confidence interval from the LIM,
based on 100 model runs with different
realizations of the stochastic forcing.

From  Newman, Sardeshmukh and Penland (J. Climate 2009)



dx
dt

= Ax + Bη    = Ax + ξ x   =   
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Sea Surface Temperature (20 Patterns)
Atmospheric Streamfunction (7 Patterns)

Atmospheric Heating (17 Patterns)
Atmospheric Velocity Potential (3 Patterns)
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The Coupled Model

A Coupled Linear Inverse Model (C-LIM) of Tropical Weekly Averages

derived from observed data for the 1982-2005 period
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Coupled and Uncoupled Versions of the model

x(t)   =   xcoup (t)   +    xint (t)

xcoup (t) =   u j
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A neat result: The eigenvectors of L separate cleanly into Coupled and Uncoupled (Internal Atmospheric)  modes
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NSP09_Fig_8

Another example of the usefulness of LIM : diagnosis of coupled interactions

Observed Power spectra of the leading Tropical SST and Atmospheric Diabatic Heating EOFs (red curves),
compared to spectra predicted by the Coupled-LIM (blue curves) and by the Uncoupled-LIM (green curves)

SST
EOF 1

Diabatic
Heating
EOF1

Gray shading represents  95%
confidence intervals determined
from a 2400 yr run of the C-LIM).

Insets in each panel show the
corresponding EOF and the variance
of weekly anomalies explained by
that pattern.

Dashed curves: spectra of the
observed heating PC 1 projected
onto the subset of either the
”Coupled” (yellow) or “Internal”
(pink) eigenmodes of the full LIM
operator.

From  Newman, Sardeshmukh and Penland (J. Climate 2009)



dx
dt

  =   A x  +   fext +   B η  

d
dt
< x >  =  A < x >  +  fext

d
dt

  C      =  A C  +  C  AT  +  B BT  

Equations for the first two momentsEquations for the first two moments

(Applicable to both Marginal and Conditional Moments)

 <x >   =   ensemble mean anomaly

    C    =   covariance of departures from ensemble mean

< x >  =  − A−1  fext          
dC
dt

  =  0  =    A C  +  C  AT  +  B BT  

x̂ '(t)  ≡  < x '(t) |  x '(0) >        =  eAt x '(0)    

Ĉ(t)  ≡  < (x̂ '− x ') (x̂ '− x ')T  >  =  C − eAtCeA
T t  

If A(t), B(t) , and If A(t), B(t) , and ffextext(t)(t)  are constant, thenare constant, then

First two Marginal moments

First two Conditional moments
Ensemble mean forecast
Ensemble spread

If x is Gaussian, then these moment equations COMPLETELY
characterize system variability and predictability

An attractive feature of
the LSF Approximation



But . . . atmospheric circulation statistics are not Gaussian . . .

Observed Skew S and (excess) Kurtosis K of daily 300 mb Vorticity   (DJF)

From Sardeshmukh and Sura 2008



Sea Surface Temperature statistics are also not Gaussian . . .

Observed Skew S and (excess) Kurtosis K of daily SSTs (DJF)

                       Skew                                                            Kurtosis

From Sura and Sardeshmukh 2008



Model 1 :   dx
dt

= Ax + fext + Bη

Model 2 :   dx
dt

= Ax + fext + Bη + (Ex)ξ

Model 3 :   dx
dt

= Ax + fext + Bη + (Ex + g)ξ −
1
2
Eg
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For simplicity consider a scalar ξ  here

A(t),B(t),E(t) are matrices; g(t),  fext (t),  η are vectors 

  
Moment Equations : 

                   

d
dt
< x >  =   M < x >  +   fext         where     M   =  (A + 1

2
E2 )           

d
dt

 C        =   M  C   +   C MT   +   B BT   +   E { C + < x >< x >T } ET   +   g  gT  
 

Modified LSF Dynamics



A simple view of how additive and linear multiplicative noise can

generate skewed PDFs  even in a deterministically linear system

Additive noise only
Gaussian
No skew

Additive and uncorrelated
Multiplicative noise 

Symmetric non-Gaussian

Additive and correlated
Multiplicative noise 

Asymmetric non-Gaussian



 A 1-D system with Correlated Additive and Multiplicative  (“CAM”) noise

 dx
dt

≅ Ax + (Ex + g)η + Bξ − 1
2
Eg                 
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 < xn >  =  −  n − 1
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 d
dx

 [( E2x2 + 2Egx + g2 + B2 ) p ] Fokker-Planck Equation  :

Remembering that  Skew  S =  < x
3 >

σ 3   and  Kurtosis  K =  < x
4 >

σ 4  −  3 ,  we have

                  K  =  3
2
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Stochastic Differential  Equation  :

Moments :

A simple relationship between Skew and Kurtosis  :



Note the quadratic relationship between K and S :    K  >  3/2  S2

Observed Skew S and (excess) Kurtosis K of daily 300 mb Vorticity   (DJF)



Observed Skew S and (excess) Kurtosis K of daily SSTs (DJF)

                       Skew                                                            Kurtosis

From Sura and Sardeshmukh 2008

Note the quadratic relationship

between K and S :    K  >  3/2  S2



Understanding the patterns of Skewness and Kurtosis

Are diabatic or adiabatic stochastic transients more important ?

To clarify this, we examined the circulation statistics in a 1200
winter simulation generated with a T42  5-level dry adiabatic GCM
(“PUMA”) with the observed time-mean diabatic forcing specified as
a fixed forcing.

There is thus NO transient diabatic forcing in these runs.

Sardeshmukh and Sura   2007, 2009



 1-point anomaly correlations of synoptic (2 to 6 day period) variations

               with respect to base points in the Pacific and Atlantic sectors

                  Simulated                                           Observed
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 Observed (NCEP, Top) and Simulated (PUMA, Bottom) S and K of 300 mb Vorticity



                      Observed and Simulated pdfs in the North Pacific
        (On a log-log plot, and with the negative half folded over into the positive half)  

500 mb
Height

300 mb
Vorticity

Observed
(NCEP Reanalysis)

Simulated by a dry adiabatic
GCM with fixed forcing



                      Observed and Simulated pdfs in the North Pacific
        (On a log-log plot, and with the negative half folded over into the positive half)  

500 mb
Height

300 mb
Vorticity

Observed
(NCEP Reanalysis)

Simulated by a dry adiabatic
GCM with fixed forcing



Skewness and Kurtosis are robust features of  atmospheric circulation statistics.

They need to be accurately represented in models, because of their effect on PDF shape.

K - S  statistics  of daily  250 mb Vorticity
in 17 recent winters (1989-2005) in two
completely different reanalysis datasets :

the 20th Century Reanalysis (20CR) using
ONLY surface pressure observations, and

the ERA-Interim Reanalysis using ALL
observations

 

 

K - S  statistics  of daily  250 mb Vorticity
in all 115 winters (1891-2005) of the 20CR
dataset

Compo and Sardeshmukh (2009)



 Skewness and Kurtosis are robust features of  atmospheric circulation statistics.

They need to be accurately represented in models, because of their effect on PDF shape.

(For example, the PDF of 500 mb ω is highly skewed. This impacts the PDF of precipitation.)

 

K - S statistics  in winter of some other
important daily atmospheric variables

Based on all 115 winters (1891-2005) in
the 20CR dataset

Compo and Sardeshmukh (2009)



Summary

1. Strong evidence for “coarse-grained” linear dynamics is provided by
( a ) the observed decay of correlations with lag
( b ) the success of linear forecast models, and
( c ) the approximately linear system response to external forcing.

2. The simplest dynamical model with the above features is a linear model perturbed by additive
Gaussian stochastic noise. Such models have been proven to be very useful.  They cannot,
however, generate non-Gaussian statistics.

3. Linear models with correlated additive and multiplicative (“CAM”) noise can generate non-
Gaussian statistics, and can also explain the remarkable observed quadratic K-S
relationship between Kurtosis and Skew, as well as the Power-Law tails of the PDFs.

4. Such extended linear models should be additionally useful for diagnosing extreme behaviour in
reality and in weather and climate models.


