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.; I If thy wodel's climatology hath:
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Weak winds in Southern parts
Realistic winds in Novthern parts
Then:
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BAROCLINIC LIFECYCLE (Hoskins & Simmons 1978)
Potential vorticity and relative flow at 6 = 350K
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Model Diagnosis

What “looks good” (eg NH flow in 5°x7.5°
model) might actually “be bad”!

(Here because of compensating errors
between two completely different
physical processes: poorly resolved
baroclinic waves, and missing orographic
drag.)

What is the fundamental origin of this
‘looks good ...is bad” difficulty?
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Looks Good........ |s Bad!
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1. Climatological response to external forcing seems
to be linked to system’s dominant internal modes of
variability. (Cf high res, low res model biases — the
Northern and Southern Annular Modes - NAM, SAM -
are the dominant modes of surface variability.)

2. Quite different forcings can produce similar
responses (cf underrepresentation of baroclinic
eddies compensated by underrepresentation of
orographic drag.

Why?



1905 - Annus Mirabilis
*Special Theory of Relativity

*Quantum explanation of the photoelectric
effect

Brownian Motion

..the same random forces which cause the
erratic motion of a particle in Brownian
motion would also cause drag if the particle
were pulled through the fluid.



Fluctuation Dissipation Theorem

A very general result of statistical
thermodynamics which quantifies
the relation between the fluctuations
of a system in thermal equilibrium
and the response of the system to
applied perturbations

First applied to the climate system
by Chuck Leith




X =F[X]
X'=F[X']+5f

OX=X"=X = OX=Lof

By the Fluctuation-Dissipation
theorem (Leith, 1975)

)

L= [C(r)c” (0)dz

. 0 . .
C is lag-t cOvariance matrix of X



Because of the advective nonlinearity in the
equations of motion, the eigenmodes of a system
linearised about a stationary basic state, are, 1n
general, not orthogonal <«

A----

Substantial amplitude along &, for a

perturbation v which initially 1s N,
almost orthogonal to &, (this

adjustment can occur on timescales

of days)
AN ECMWE c



Model diagnosis is difficult because the long-
term response of the system to some forcing is
linked to the system’s dominant internal modes
of variability. Different forcings can have similar

responses.

Both issues are a consequence of the
nonlinearity of the equations of motion of
climate.

What to do?

Don’t focus diagnostics exclusively on the long-
term response. Look at the short-term transient
response too....eg within the data assimilation

system itself
o
ECMWF &3
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Data Assimilation Cycle: Perfect Model

M.J. Rodwell
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Observations
o Analysis

A Analysis increment

Mean Analysis Increment = 0

———  First guess forecast
| | | | |

0 1 2 3 4
Time (cycles)

Observations are not assumed to be perfect, but they should be sufficiently unbiased


Presenter
Presentation Notes
In the data assimilation process, we try to produce an ‘analysis’ that is as close to the observations as possible but also being (approximately) a valid model state. The data assimilation starts with a ‘first guess’ forecast initiated from a previous analysis. As shown above, this forecast will diverge from the subsequent observations. Chaos ensures that this divergence occurs even if the model is ‘perfect’. The data assimilation at ECMWF then uses the tangent-linear model to iteratively find a new model state that is closer to the new observations. The ‘analysis increment’ (as denoted by the dotted arrows) is the difference between the new analysis and the first guess forecast.
To first-order, a perfect model will produce as many erroneously cold first-guess forecasts as it will produce erroneously warm first-guess forecasts. Hence, the analysis increments for a perfect model will average to zero over sufficiently many data assimilation cycles. Note that this is true (to first order) even if the observations are not perfect as long as they are unbiased.
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Data Assimilation Cycle: Imperfect Model

Observations
e Analysis

A Analysis increment

Mean Analysis Increment # 0

———  First guess forecast
| | | | |

0 1 2 3 4
Time (cycles)

—Mean Analysis Increment = Mean Net Tendency
= Convective + Radiative + ... + Dynamical Tendency

Can assess individual processes when acting on states close to the truth
(Klinker and Sardeshmukh 1992)


Presenter
Presentation Notes
The mean analysis increment is equivalent to (minus) the mean initial tendency (in units of, e.g., K/cycle).
If a model has a systematic error (we will assume it has a cooling tendency as seen above) then, on average, the first guess will be colder than the observations. This will be reflected in a positive mean temperature analysis increment (as denoted by the dotted arrows).
How might such a systematic error arise? The concept of ‘radiative-convective’ equilibrium embodies the idea that radiative processes act to destabilise the atmosphere (heat the surface and cool the mid-to-upper troposphere) and the convection induced by this destabilisation acts to restore balance by cooling the surface and heating the mid-to-upper troposphere. With this idealised concept in mind, either a convection scheme that is too weak (given the observed temperature and humidity profiles) or a radiation scheme that is too strong (given the observed conditions; as embodied by the analysis) would lead to a systematic initial net cooling of the mid-troposphere.
With the mean initial tendencies (or analysis increments), we therefore have a diagnostic that can quantify local model physics error before significant interactions have taken place with the resolved dynamics.
The advantage of initial tendencies over analysis increments is that initial tendencies can be broken-down into the component tendencies from each physical and dynamical process within the model. We can, for example, diagnose convective and radiative tendencies separately.
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ptical Depth
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®* UNCERTAINTY IN PRESENT LOADING
®* CHANGES IN LOADING DUE TO
CLIMATE CHANGE

Old: C26R1 (Tanre et al. 1984), New: C26R3 (Tegen et al. 1997).
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Presentation Notes
The ECMWF model recently had a change to its aerosol climatology. The previous ‘old’ climatology was based on that of Tanré et al. (1984). This climatology is specified as annual-mean distributions of various aerosol classes: ‘maritime’, ‘continental’, ‘urban’, ‘desert’, and stratospheric background aerosol. In October 2003, a ‘new’ climatology was implemented. This climatology is based on monthly-mean global maps of optical depths for a range of aerosol types compiled by Tegen et al. (1997). The aerosol types included are sea-salt, soil-dust, sulphate, organic carbon and black carbon. Aerosol loading is deduced from emission/transport modelling studies.

Much of the difference between the two climatologies is associated with Saharan desert aerosol (soil-dust). Because this aerosol can absorb as well as scatter radiation, it has the potential to have a very direct impact on tropospheric temperatures. This change in aerosol climatology thus provides a good case study that allows us introduce theoretical ideas about the tropical circulation, and that can be used to demonstrate diagnostic techniques to help understand forecast error.
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Initial net warming of lower
troposphere (a) — Positive
feedback by D+5 (b) with
increased convection and
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New Aerosol

Initial radiative forcing
change (e) — More initial
convection but reduced
initial net warming (c) and
thus smaller feedback with
dynamics (d)
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70% confidence intervals are based on daily means. CONTROL model = 29R1,T159,L60,1800S.



Can a 6hr weather forecast
tell us about global warming

100 years from now?
(Rodwell and Palmer, 1986)
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Soaring global warming ‘can’t be ruled out'

19:03 26 January 2005
NewScientist.com news service
Jenny Hogan

The Earth may be much more sensitive to
global warming than previously thought,
according to the first results from a massive
distributed-computing project.

The project tested thousands of climate
models and found that some produced a world
that warmed by a huge 11.5°C when
atmospheric carbon dioxide concentrations
reached the levels expected to be seen later
this century.

This extreme result is surprising because it
lies far outside the 1.4°C to 4.5°C range
predicted by the Intergovernmental Panel on
Climate Change (IPCC) for the same COz-level
increase - a doubling of COz concentration
from pre-industrial times. But it is possible
the IPCC range was wrong because its
estimate is based on just a handful of

Enlarge image

The climate modelling software divides
the Earth's surface into boxes hundreds
of kilometres square (image:
Climateprediction.net)
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different computer models.

v

“There are no
obvious
problems with
the high
temperature
models,
Stainforth
says.... The
uncertainty at
the upper end
has exploded,
says team-
member
Myles Allen.”
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One key parameter in a convection

parametrisation is the entrainment-rate
parameter

Entrainment

turbulent weak

/ turbulent strong

organized

Entrainment

*mixes environmental air into
convective clouds

*is caused by turbulence and/or
organized inflow

*thereby reduces the difference of
cloud to environment, which is the
fuel the cloud thrives on

*strength of its effect depends on
entrainment rate (model
parameter) and difference in
properties of cloud and
environment

*high entrainment rate and/or very
dry environment -> shallow clouds

*low entrainment rate and/or very
moist environment -> deep clouds


Presenter
Presentation Notes
This is a schematic of a convective cloud. It shows updraught an downdraught as well as in and outflow regions. Most importantly it shows the basic idea of entrainment by turbulence and/or organized inflow. Entrainment reduces the cloud buoyancy and hence the kinetic energy of the updraught. The strength of its effect depend on the amount of mass mixed (controlled by the entrainment rate parameter in a model) and the properties of the environment relative to the cloud. Entrainment to a large extend controls cloud depth as well as the thermodynamic and microphysical properties of the cloud.


Climate: Error vs Sensitivity
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Circles: AGCM + Mixed-Layer model results from Stainforth et al. (2005) show combined RMSE of 8 year
mean, annual mean T,,,,, SLP, precipitation and ocean-atmosphere sensible+latent heat fluxes (equally

weighted and normalised by the control).

Diamonds: AGCM results from Rodwell & Palmer (2006) show RMSE from 39 year mean, annual mean Tygs,

SLP and precipitation (equally weighted and normalised by the control).
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So that’s it. Just perform the
weather/climate model
diagnostics on the first 6 hours
of a forecast and all problems
can be easily diagnosed and
cured.

Umm...actually not that simple!

ECMWF &



Eg 2) Lorenz(1963) in an EOF basis

a, = 2.3a,-6.2a, —0.49a,a, —0.57a,a,
a, =—-62-2.7a, +0.49a’ —0.49a; +0.14a,a,

a, =—0.63a, —13a, +0.43a,a, + 0.49a,a,

Selten (1995)
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31d EQF only explains 4% of variance.
Parametrise 1t?

40



Lorenz(1963) in a truncated EOF basis
with parametrisation of a,

a =2.3a,-6.2a, —0.49aa, —0.57a,a,

a, =—-62-2.7a,+0.49a’ —0.49a; +0.14a,a,
a, =P(a,a,;a,p0...)
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Parametrised model 1s good as a short-
range forecast model of L63, but
exhibits major climatic errors.

Make parametrisation more complicated — eg

quadratic, cubic...transcendental function of
PCs?

Won'’t help. By Poincar¢-Bendixon theorem,
the parametrised model cannot exhibit chaotic
variability for any deterministic (“bulk
formula’) parametrisation



What about making the parametrisation



Stochastic-Lorenz(1963) in a
truncated EOF basis

a, =2.3a,—6.2a, —0.49a,a, —0.57a,a,
a, =—62-2.7a, +0.49a’ —0.49a; +0.14a,a,

3215

Stochastic noise
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|s there a component of
model error in
contemporary

NWP/climate models,
associated with the fact
that their parametrisations
are deterministic rather
than stochastic?




Calculate exact PDF of sub-grid Shutts and Palmer, J.Clim, 1987

temperature tendencies in a coarse-
grained (~50km) grid box based on

output from a cloud-resolving o8
(~1km) model treated as “truth”. Weakly

PDFs are constrained such that convecting
parametrised tendencies based on '

coarse-grain input fields lie within
boxes of width 6K/day.

st.dev.=16.78 K/day

0
1—hr mean T tendency (K/day) on day 21 to 27 for =3 < Q1 < 3 K/day

_ st.dev.=22.1 K/day | st.dev.= 38.9 K/day
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o 160 200 300
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Width of pdf « parametrised tendency

1—hr mean T tendency (K/day) on day 21 to 27 for 27 < Q1 < 33 K/day



Stochastic Parametrisations in use
at ECMWF

» Stochastic Tendency Perturbations
(BUizza et al, QJ, 1999) Stochastic

K=D(x) ()

» Spectral Stochastic Backscatter (cf Leith,
1990;Berner et al JAS, March 2009)



Schematic illustration of potential
impact of stochastic parametrisation
on systematic error

Eg ball bearing in potential well.



Stochastic Physics versus Resolution

» Experiments with model cycle 31R1

« Experiments with Berner et al (JAS 2009) stochastic
backscatter scheme

* Winters (Dec-Mar) of the period 1990-2005
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Conclusions

Advective nonlinearity of climate makes the problem of
diagnosing model error a challenging one. Response to
imposed forcing is tied to internal modes. Different forcings
can exhibit similar responses.

One way forward is to focus on short-range tendencies — this
technique could potentially powerful in helping to reduce the
long standing problem of reducing uncertainty in climate
sensitivity

However, there is a second class of model error arising from
the use of deterministic parametrisations.

Stochastic parametrisation is a tool to both represent and
reduce model error.
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