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Model Diagnosis
What “looks good” (eg NH flow in 5°x7.5°
model) might actually “be bad”!

(Here because of compensating errors 
between two completely different 
physical processes: poorly resolved 
baroclinic waves, and missing orographic 
drag.)

What is the fundamental origin of this 
“looks good …is bad” difficulty?
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Looks Good……..Is Bad!
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Leading EOF (ie 
leading eigenvector 
of the covariance 
matrix C of L63)
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1. Climatological response to external forcing seems 
to be linked to system’s dominant internal modes of 
variability. (Cf high res, low res model biases – the 
Northern and Southern Annular Modes - NAM, SAM -
are the dominant modes of surface variability.)

2. Quite different forcings can produce similar 
responses (cf underrepresentation of baroclinic 
eddies compensated by underrepresentation of 
orographic drag.

Why?



1905 - Annus Mirabilis

•Special Theory of Relativity

•Quantum explanation of the photoelectric 
effect

•Brownian Motion

..the same random forces which cause the 
erratic motion of a particle in Brownian 
motion would also cause drag if the particle 
were pulled through the fluid.



Fluctuation Dissipation Theorem

A very general result of statistical 
thermodynamics which quantifies 

the relation between the fluctuations 
of a system in thermal equilibrium 
and the response of the system to 

applied perturbations

First applied to the climate system 
by Chuck Leith
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By the Fluctuation-Dissipation 
theorem (Leith, 1975)



ECMWF

Because of the advective nonlinearity in the 
equations of motion, the eigenmodes of a system 
linearised about a stationary basic state, are, in 
general, not orthogonal

Substantial amplitude along ξ1 for a 
perturbation ν which initially is 
almost orthogonal to ξ1 (this 
adjustment can occur on timescales 
of days)



ECMWF

Model diagnosis is difficult because the long-
term response of the system to some forcing is 
linked to the system’s dominant internal modes 
of variability. Different forcings can have similar 

responses. 

Both issues are a consequence of the 
nonlinearity of the equations of motion of 

climate. 

What to do?

Don’t focus diagnostics exclusively on the long-
term response. Look at the short-term transient 
response too….eg within the data assimilation 

system itself
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Data Assimilation Cycle: Perfect Model

Observations are not assumed to be perfect, but they should be sufficiently unbiased

Observations
Analysis

Analysis increment

First guess forecast

0 1 2 3 4
Time (cycles)

T

Mean Analysis Increment = 0

Presenter
Presentation Notes
In the data assimilation process, we try to produce an ‘analysis’ that is as close to the observations as possible but also being (approximately) a valid model state. The data assimilation starts with a ‘first guess’ forecast initiated from a previous analysis. As shown above, this forecast will diverge from the subsequent observations. Chaos ensures that this divergence occurs even if the model is ‘perfect’. The data assimilation at ECMWF then uses the tangent-linear model to iteratively find a new model state that is closer to the new observations. The ‘analysis increment’ (as denoted by the dotted arrows) is the difference between the new analysis and the first guess forecast.
To first-order, a perfect model will produce as many erroneously cold first-guess forecasts as it will produce erroneously warm first-guess forecasts. Hence, the analysis increments for a perfect model will average to zero over sufficiently many data assimilation cycles. Note that this is true (to first order) even if the observations are not perfect as long as they are unbiased.
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Data Assimilation Cycle: Imperfect Model

Observations
Analysis

Analysis increment

First guess forecast

0 1 2 3 4
Time (cycles)

T

Mean Analysis Increment ≠ 0

−Mean Analysis Increment = Mean Net Tendency
= Convective + Radiative + … + Dynamical Tendency

Can assess individual processes when acting on states close to the truth
(Klinker and Sardeshmukh 1992)

Presenter
Presentation Notes
The mean analysis increment is equivalent to (minus) the mean initial tendency (in units of, e.g., K/cycle).
If a model has a systematic error (we will assume it has a cooling tendency as seen above) then, on average, the first guess will be colder than the observations. This will be reflected in a positive mean temperature analysis increment (as denoted by the dotted arrows).
How might such a systematic error arise? The concept of ‘radiative-convective’ equilibrium embodies the idea that radiative processes act to destabilise the atmosphere (heat the surface and cool the mid-to-upper troposphere) and the convection induced by this destabilisation acts to restore balance by cooling the surface and heating the mid-to-upper troposphere. With this idealised concept in mind, either a convection scheme that is too weak (given the observed temperature and humidity profiles) or a radiation scheme that is too strong (given the observed conditions; as embodied by the analysis) would lead to a systematic initial net cooling of the mid-troposphere.
With the mean initial tendencies (or analysis increments), we therefore have a diagnostic that can quantify local model physics error before significant interactions have taken place with the resolved dynamics.
The advantage of initial tendencies over analysis increments is that initial tendencies can be broken-down into the component tendencies from each physical and dynamical process within the model. We can, for example, diagnose convective and radiative tendencies separately.



M.J. Rodwell
30

Old and New Aerosol Optical Depth

Old: C26R1 (Tanre et al. 1984), New: C26R3 (Tegen et al. 1997).

• LARGE SAHARAN SOIL-DUST CHANGE
• SCATTERS & ABSORBS
• SINGLE SCATTERING ALBEDO ≈ 0.9

• CHANGE COMPARIABLE TO
• UNCERTAINTY IN PRESENT LOADING
• CHANGES IN LOADING DUE TO 

CLIMATE CHANGE

NEW (JULY)

OLD (NO ANNUAL CYCLE)

OPTICAL
DEPTH d 
AT 550nm

ATTENUATION 
FACTOR = e-d

Presenter
Presentation Notes
The ECMWF model recently had a change to its aerosol climatology. The previous ‘old’ climatology was based on that of Tanré et al. (1984). This climatology is specified as annual-mean distributions of various aerosol classes: ‘maritime’, ‘continental’, ‘urban’, ‘desert’, and stratospheric background aerosol. In October 2003, a ‘new’ climatology was implemented. This climatology is based on monthly-mean global maps of optical depths for a range of aerosol types compiled by Tegen et al. (1997). The aerosol types included are sea-salt, soil-dust, sulphate, organic carbon and black carbon. Aerosol loading is deduced from emission/transport modelling studies.

Much of the difference between the two climatologies is associated with Saharan desert aerosol (soil-dust). Because this aerosol can absorb as well as scatter radiation, it has the potential to have a very direct impact on tropospheric temperatures. This change in aerosol climatology thus provides a good case study that allows us introduce theoretical ideas about the tropical circulation, and that can be used to demonstrate diagnostic techniques to help understand forecast error.
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Initial 
Tendencies
Old Aerosol
Initial net warming of lower 
troposphere (a) → Positive 
feedback by D+5 (b) with 
increased convection and 
large-scale dynamical 
moisture convergence  

New Aerosol
Initial radiative forcing 
change (e) → More initial 
convection but reduced 
initial net warming (c) and 
thus smaller feedback with 
dynamics (d)

North Africa = [5oN-15oN, 20oW-40oE]. Mean of 31 days X 4 forecasts per day X 12 timesteps per forecast.
70% confidence intervals are based on daily means. CONTROL model = 29R1,T159,L60,1800S.



Can a 6hr weather forecast 
tell us about global warming 

100 years from now?           
(Rodwell and Palmer, 1986)



“There are no 
obvious 
problems with 
the high 
temperature 
models, 
Stainforth 
says…. The 
uncertainty at 
the upper end 
has exploded, 
says team-
member 
Myles Allen.”  



One key parameter in a convection 
parametrisation is the entrainment-rate 

parameter

Entrainment

turbulent weak

turbulent strong

organized

Entrainment
•mixes environmental air into 
convective clouds

•is caused by turbulence and/or 
organized inflow

•thereby reduces the difference of 
cloud to environment, which is the 
fuel the cloud thrives on

•strength of its effect depends on 
entrainment rate (model 
parameter) and difference in 
properties of cloud and 
environment

•high entrainment rate and/or very 
dry environment -> shallow clouds

•low entrainment rate and/or very 
moist environment -> deep clouds

Presenter
Presentation Notes
This is a schematic of a convective cloud. It shows updraught an downdraught as well as in and outflow regions. Most importantly it shows the basic idea of entrainment by turbulence and/or organized inflow. Entrainment reduces the cloud buoyancy and hence the kinetic energy of the updraught. The strength of its effect depend on the amount of mass mixed (controlled by the entrainment rate parameter in a model) and the properties of the environment relative to the cloud. Entrainment to a large extend controls cloud depth as well as the thermodynamic and microphysical properties of the cloud.
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Climate: Error vs Sensitivity

Circles: AGCM + Mixed-Layer model results from Stainforth et al. (2005) show combined RMSE of 8 year 
mean, annual mean T2m, SLP, precipitation and ocean-atmosphere sensible+latent heat fluxes (equally 
weighted and normalised by the control).
Diamonds: AGCM results from Rodwell & Palmer (2006) show RMSE from 39 year mean, annual mean T850, 
SLP and precipitation (equally weighted and normalised by the control).

Highest climate 
sensitivity for
low entrainment models

fast 
physics!
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ENTRAINx3 T bias at D+5. Tendencies at step 2

January 2005 Initial T Tendencies

CONTROL

ENTRAIN/5

CLOUD

ENTRAINx3

Dynamic
Radiative
Vertical Diffusion
Cumulus Convection
Large Scale Precipitation
Total
D+5 Bias
Cloud Frac

ENTRAIN/5 and 
ENTRAINx3 are out 
of balance

Caveat: Not same model as Stainforth et al. 
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So that’s it. Just perform the 
weather/climate model 

diagnostics on the first 6 hours 
of a forecast and all problems 
can be easily diagnosed and 

cured. 

Umm…actually not that simple!
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Eg 2) Lorenz(1963) in an EOF basis 

Selten (1995) 



3rd EOF only explains 4% of variance. 
Parametrise it?



Lorenz(1963) in a truncated  EOF basis 
with parametrisation of a3
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Parametrised 
model



Parametrised model is good as a short-
range forecast model of L63, but 

exhibits major climatic errors. 

Won’t help. By Poincaré-Bendixon theorem, 
the parametrised model cannot exhibit chaotic 

variability for any deterministic (“bulk 
formula”) parametrisation

Make parametrisation more complicated – eg 
quadratic, cubic…transcendental function of 

PCs?



What about making the parametrisation 
stochastic?



Stochastic-Lorenz(1963) in a 
truncated  EOF basis

Stochastic noise
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Stochastic Truncated L63



Too weak/ Too white Noise

Systematic bias in 
mean state and 
variability cf L63



Is there a component of 
model error in 
contemporary  

NWP/climate models, 
associated with the fact 

that their parametrisations 
are deterministic rather 

than stochastic?



Calculate exact PDF of sub-grid 
temperature tendencies in a coarse-
grained (∼50km) grid box based on 
output from a cloud-resolving 
(∼1km) model treated as “truth”.

PDFs are constrained such that 
parametrised tendencies based on 
coarse-grain input fields lie within 
boxes of width 6K/day. 

st.dev.= 22.1 K/day st.dev.= 38.9 K/day

Moderately 
convecting

Strongly 
convecting

Weakly  
convecting

st.dev.= 16.78 K/day

Width of pdf ∝ parametrised tendency

Shutts and Palmer, J.Clim, 1987



Stochastic Parametrisations in use 
at ECMWF

• Stochastic Tendency Perturbations 
(Buizza et al, QJ, 1999)

• Spectral Stochastic Backscatter (cf Leith, 
1990;Berner et al JAS, March 2009)

( ) ( )X D X P Xσ= +&

Stochastic 
process



Eg ball bearing in potential well. 

•

Schematic illustration of potential 
impact of stochastic parametrisation 

on systematic error 



Stochastic Physics versus Resolution

• Experiments with model cycle 31R1
• Experiments with Berner et al (JAS 2009) stochastic 

backscatter scheme
• Winters (Dec-Mar) of the period 1990-2005

CNTT95-ERA40 SPBST95-CNTT95CNTT511-CNTT95



Conclusions

• Advective nonlinearity of climate makes the problem of 
diagnosing model error a challenging one. Response to 
imposed forcing is tied to internal modes. Different forcings 
can exhibit similar responses. 

• One way forward is to focus on short-range tendencies – this 
technique could potentially powerful in helping to reduce the 
long standing problem of reducing uncertainty in climate 
sensitivity

• However, there is a second class of model error arising from 
the use of deterministic parametrisations. 

• Stochastic parametrisation is a tool to both represent and 
reduce model error.
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