

New observations archive at SMHI

12th Workshop on Meteorological Operational Systems

Tomas Karlsson IT-architect SMHI (Esa Falkenroth, Per Hagström)

- Background
- Architecture
- Technology
- Challenges

- Background
- Architecture
- Technology
- Challenges

Background

- The main climate archive at SMHI needs to be replaced
 - Build in the early 80'ies before SQL was invented
 - Staff about to retire
 - "Closed system"
 - Runs on Alpha/OpenVMS
 - Mimer database
- Demand for new products on the web
- Lots of work in the old system to provide data to the research community
- Poor metadata and consistency control in the old archive

- Background
- Architecture
- Technology
- Challenges

Design goals

- Open, easy to use and platform independent interfaces
- Low cost hardware and software
- Prevent "data erosion"
- Long life time
- Thin client / web based client

Design principals

- Store data in a relational database
- Normalized database design
- Precise description of dimensions like time, altitude, physical phenomena...
- Referential consistency
- Comprehensive metadata
- Platform independent software
- Use of standards
 - ISO 191 15/39
 - OGC web services

Service Oriented Architecture

- Background
- Architecture
- Technology
- Challenges

Technology

- Database
 - Postgres database
 - Postgis geospatial extension
 - Redhat Linux on HP Intel EM64T based blade servers
 - Disk on Hitachi AMS SAN
 - (SSD under investigation/testing)
- Applications
 - JBoss application server (Java)
 - Redhat Linux on HP Intel EM64T based blade servers
 - EJB3
 - REST and SOAP web services
 - Geoserver, Geowebcache and Geonetworks

JBoss Community

- Background
- Architecture
- Technology
- Challenges

Data migration

- Strategy
 - Store the observed value and the "best value"
- Challenges
 - Several old archives
 - Unclear quality of data in some of the archives
 - Some data missing meta data
 - Duplicated information
 - How do you find the "best value" for a given time?
- Result
 - A set of migrations "rules" for each parameter to be migrated
 - Consolidated metadata catalogue for all the old archives.
 - BUFR Generator to generate intermediate BUFR files

Future challenges

- Replace the real time database
- Public web services for researchers
- Increased reporting frequency
- Storing precomputed aggregates