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An ensemble three-dimensional variational data assimilation system for the global ocean

1 Abstract

This paper presents a three-dimensional variational data assimilation (3D-Var) system that has been developed
for global analysis with the OPA ocean general circulation model. The global 3D-Var system is based on an
earlier system developed for the tropical Pacific, but has been extended to incorporate new features including
fully multivariate background-error covariances and the capacity to produce ensembles of ocean analyses for
climate studies and forecast initialization. The ensembles are created by perturbing the surface forcing fields
(wind-stress, fresh-water flux and heat flux) and the observations (temperature and salinity profiles) used in the
assimilation process.

Cycled 3D-Var experiments over the period 1993-2000 are presented to test the sensitivity of the analyses to
two flow-dependent formulations of the background-error standard deviations (σ b) for temperature and salin-
ity. The first formulation is based on an empirical parameterization of σ b in terms of the vertical gradients of
the background temperature and salinity fields, while the second formulation involves a more sophisticated ap-
proach that derives σ b from the spread of an ensemble of analyses. In both experiments, the observation-error
standard deviations (σ o) are geographically dependent and estimated from a model-data comparison prior to as-
similation. An additional 3D-Var experiment that employs the parameterized σ b but a simpler σ o formulation,
and a control experiment involving no data assimilation were also conducted and used for comparison.

All 3D-Var experiments produce a significant reduction in the mean and standard deviation of the temperature
and salinity innovations compared to those of the control experiment. Comparing innovation statistics from the
two σ b formulations shows that both formulations produce similar results below approximately 150 m but the
parameterized σ b produce slightly better results above this depth where statistical consistency checks indicate
that the ensemble σ b are underestimated. The rate at which observational information is lost between cycles,
however, is shown to be much reduced with the ensemble σ b, suggesting that the analyses produced with the
ensemble σ b are in better balance than those produced with the parameterized σ b. Sea surface height (SSH)
anomalies in the northwest Atlantic and zonal velocities in the equatorial Pacific, which are fields not directly
constrained by the observations, are clearly better with the ensemble σ b than with the parameterized σ b when
compared to independent data. Results show that while some aspects of those variables are improved with data
assimilation (SSH anomalies and currents in the central and eastern Pacific), other aspects are degraded (SSH
anomalies in the northwest Atlantic, currents in the western Pacific). Areas for improving the ensemble method
and for making better use of the ensemble information are discussed.
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2 Introduction

A variational data assimilation system for the OPA ocean general circulation model (Madec et al. 1998) has
been developed at CERFACS for climate research applications. The system, known as OPAVAR, is based on an
incremental variational algorithm (Courtier et al. 1994). Three- and four-dimensional variational assimilation
(3D-Var and 4D-Var) versions of the system were initially developed for tropical Pacific basin applications
(Weaver et al. 2003; Vialard et al. 2003; Ricci et al. 2005). The system was later extended to a global con-
figuration in the European ENACT1 project where it was applied to produce multi-decadal ocean analyses
for seasonal hindcast initialization and studies of ocean climate variability (Davey et al. 2006; Carton and
Santorelli 2008). Important advances were made to the system during ENACT, one of the most noteworthy
being the development of a fully multivariate background-error covariance model based on balance operators
(Weaver et al. 2005). More recently the system has been extended in the European ENSEMBLES2 project to
generate a nine-member ensemble of multi-decadal ocean analyses. The ensemble was produced using multi-
ple atmospheric forcing fields whose differences were constructed to be consistent with estimates of the actual
uncertainty in these fields. In ENSEMBLES, the ocean analysis ensemble has been used to contribute to the
production of probabilistic forecasts on seasonal to decadal times scales (Weisheimer et al. 2007).

The important feature of an ensemble data assimilation system is its capacity to provide flow-dependent infor-
mation on analysis and background error. This information can be exploited in a cycled assimilation system to
improve the estimate of the background-error covariance matrix on each cycle, although no attempt was made
to do this in the ENSEMBLES experiments. The simplest way to use the ensemble information is to build a
low-rank approximation to the background-error covariance matrix on a given cycle from the sample covariance
of the ensemble of model forecast states initiated from the previous cycle. The matrix is rank deficient since
the number of ensemble members is typically several orders of magnitude smaller than the number of back-
ground state variables. In the Ensemble Kalman Filter (EnKF), this rank deficiency can be exploited to produce
computationally efficient implementations of the standard Kalman filter analysis equation (see Houtekamer
and Mitchell (2005) and Evensen (2007) for a review of the different variants of the EnKF). However, using a
small ensemble to estimate the covariance matrix directly in a high-dimensional system can lead to noisy vari-
ances and spurious long-range correlations due to sampling error. Various filtering and localization procedures
have been proposed to alleviate this problem in practical implementations of the EnKF (Houtekammer and
Mitchell 2001; Keppenne and Reinecker 2002; Ott et al. 2004; Buehner and Charron 2007; Oke et al. 2007).

Lorenc (2003b) and Buehner (2005) illustrate how an ensemble-estimated background-error covariance matrix,
with or without localization, can be used in a variational assimilation scheme. The procedure involves using
the square root of the (localized) ensemble covariance matrix to transform the control vector into a vector of
background-state increments. The basic transformation is designed to precondition the minimization problem
and is standard in variational assimilation systems that employ more conventional background-error covariance
formulations based on covariance models (Derber and Bouttier 1999; Lorenc 2003a; Weaver et al. 2005).
Methods to define the background-error covariance matrix as a linear combination of an ensemble-estimated
matrix and a covariance model matrix have also been proposed (Hamill and Synder 2000; Lorenc 2003b;
Buehner 2005).

Rather than using the ensemble directly to construct an estimate of the covariance matrix, it may be used
indirectly to calibrate specific parameters of a covariance model (Fisher 2003; Žagar et al. 2005; Belo Pereira
and Berre 2006; Berre et al. 2006). The use of a covariance model has the advantage of providing a full-

1ENhanced ocean data Assimilation and Climate predicTion
(see http://www.ecmwf.int/research/EU projects/ENACT).

2ENSEMBLE-based predictions of climate changes and their impactS
(see http://www.ecmwf.int/research/EU projects/ENSEMBLES).
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rank (implicit) representation of the covariance matrix and thus allows the assimilation method to produce
corrections to the background state in a much larger space than that spanned by a limited number of ensemble
members. There is also no need for a separate localization procedure since covariance models are constructed
to permit only spatially limited covariance functions. The use of ensembles in combination with a variational
assimilation scheme is relatively unexplored in ocean data assimilation. The main purpose of this study is to
investigate the potential of the ocean ensemble 3D-Var system developed for ENSEMBLES to provide flow-
dependent estimates of the background-error variances. This study can be viewed as a first step towards making
more comprehensive use of the ensemble for calibrating other parameters of the covariance model.

The paper is organized as follows. Section 3 gives a description of the basic components of the data assim-
ilation system. The sensitivity experiments presented in this paper involve different formulations of both the
observation-error variances and background-error variances. These formulations, including the background-
error variance formulation based on the ensemble method, are described in Section 4. Results from cycled
3D-Var experiments that compare the relative impact of the different variance formulations are presented in
Section 5. A summary and conclusions are given in Section 6. Appendix A provides a derivation of the formula
used to estimate geographically dependent observation-error variances. Appendix B presents the mathematical
basis of the ensemble method used for estimating background-error covariances.

3 The assimilation system

3.1 Ocean model and forcing fields

The ocean model is a global, free-surface configuration of the ocean general circulation model OPA8.2 (Madec
et al. 1998). The model solves the primitive equations for horizontal currents, uh = (u,v), potential temperature,
T , salinity, S, and sea surface height (SSH), η . The free-surface formulation is described in Roullet and
Madec (2000). The equations are formulated in orthogonal curvilinear z-coordinates and discretized using finite
differences on an Arakawa C-grid. The horizontal grid is stretched in the northern hemisphere and contains two
poles located on the North American and Asian continents. Outside the equatorial region, the grid mesh is
approximately isotropic (Mercator-like) with zonal × meridional resolution approximately 2◦×2◦ cos φ where
φ is latitude. Within the equatorial region, the meridional resolution is increased, with the grid size reaching a
value of 0.5◦ at the equator. Increased resolution is also used in the Mediterranean Sea (1◦× 1◦) and Red Sea
(≈ 1◦×2◦). The number of horizontal grid points is 182×149. The model has 31 levels of which 21 are in the
upper 1000 m. The thickness of the levels varies from 10 m within the upper 100 m to 500 m below the 3000 m
level. The maximum depth is 5500 m.

Lateral and vertical subgrid scale mixing is parameterized using Laplacian diffusion. Vertical diffusion coeffi-
cients for momentum, heat, and salt are computed using a Turbulent Kinetic Energy mixing scheme. Lateral
mixing coefficients of momentum, heat and salt are geographically dependent. For heat and salt, the lat-
eral diffusion acts along neutral surfaces and includes an additional tracer advection term following Gent and
McWilliams (1990). The model is forced using wind-stress, τ = (τ x,τy), heat flux (Q) and fresh-water (Precip-
itation minus Evaporation) flux, PmE , from ERA40 (Uppala et al. 2005). The fresh-water flux from ERA40 is
known to be inaccurate. Here the model is forced using bias-corrected ERA40 precipitation from Troccoli and
Kållberg (2004).

The ensemble experiments are performed over the 9-yr period 1 January 1993 to 31 December 2001. The
experiments are designed to test the impact of using the ensemble to update the background-error variances on
each assimilation cycle. A separate set of ensemble experiments covering the 46-yr period 1960-2005 has also
been conducted as part of the ENSEMBLES project. The assimilation system used in those experiments is a
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close variant of the system used here, the main difference being that there was no attempt to use the ensemble
to update the background-error covariance matrix as done in this study. The ENSEMBLES experiments also
used a more recent version (EN3) of the quality-controlled in situ data-set described in section 3.2 and these
data were not perturbed as in this study (see section 4.2). In those experiments, the ocean analysis ensemble
was used to provide initial conditions for seasonal and decadal ensemble forecasts. Results from the assimila-
tion experiments conducted in ENSEMBLES are not discussed in this paper, although results from a separate
experiment that employs a system similar to the one used in ENSEMBLES is used as a reference for evaluating
the impact of the ensemble-generated background-error variances.

The experimental design follows closely the common procedures used in ENSEMBLES and in the earlier
project ENACT (Davey et al. 2006). The initial conditions on 1 January 1993 were obtained by spinning up
the model from rest and temperature and salinity states defined from the Levitus climatology. Climatological
ERA40 forcing was used from 1 January 1978 to 31 December 1982, and daily ERA40 forcing was used from 1
January 1983 to 31 December 1992. The model sea surface temperature (SST) field is relaxed to model-gridded
SST analysis products. During the spin-up from 1 January 1978 to 31 December 1982, the SST climatology
from ERA40 was used, while daily-interpolated SST analyses from Reynolds OI v2 (Reynolds et al. 2002) were
used from 1 January 1983 onwards. As in ENACT and ENSEMBLES, a globally uniform relaxation coefficient
of −200Wm−2K−1 is used, which corresponds to a relaxation time-scale of 12 days for a mixed-layer depth of
50 m. With this choice, the model SST is always close to the “observed” SST. This is an important requirement
for seasonal and decadal forecast initialization for which the system has been applied in ENSEMBLES.

Subsurface relaxation to climatology has been applied to control model drift but has been chosen to be rather
weak so as not to suppress interannual and decadal variability. A weak global subsurface relaxation to gridded
temperature and salinity monthly climatology, smoothed with a 3-month running mean, is applied with a 3-yr
timescale at all vertical levels and all grid points, except within 1000 km of coastlines where the relaxation
coefficient is reduced smoothly to a value of zero directly at the coastline, and poleward of 60◦ N/S where the
relaxation time scale is reduced smoothly from 3 years to 50 days over the latitude band 60◦ N/S to 70◦ N/S.
The subsurface relaxation provides a weak relaxation to temperature and salinity climatology in the top ocean
model level. For temperature, the relaxation is dominated by the much stronger relaxation to SST described
above. For sea surface salinity (SSS), no relaxation is applied other than the weak contribution at the surface
from the relaxation to climatology. Imbalances in the fresh-water fluxes cause the globally averaged model
SSH field to drift (≈ 0.7 m in 15 yrs). Here the drift has been suppressed by applying a daily correction to the
fresh-water fluxes based on the sea-level drift that occurs on the previous day. As a result, the global mean SSH
field is very close to zero on any given time step.

3.2 Observations

The assimilation data-set consists of in situ temperature and salinity profiles from version EN2 v1 of the EN-
ACT/ENSEMBLES quality-controlled data-set (Ingleby and Huddleston 2007). The data are obtained pri-
marily from the World Ocean Database 2001 (WOD01; Conkright et al. 2001). After 1990, they are supple-
mented using data from the World Marine Environmental Laboratory (Johnson et al. 2002) and the Global
Temperature-Salinity Profile Program. The data-set is essentially composed of bathythermographs (MBTs and
XBTs), hydrographic profiles (CTDs and predecessors), moored buoys from the TAO/TRITON and PIRATA
arrays, profiling floats and Argo data. Observations determined by the quality control as “definitely wrong” or
“probably wrong” were not assimilated. Additional screening has been done directly in the assimilation system.
Observations have been rejected in closed seas, in some semi-enclosed seas (Mediterranean, Red, Baltic and
Japan Seas), below 1000 m and poleward of 65◦N/S. The reason for rejecting the data in those regions was
based on the inadequacy of the model or assimilation system to use the observational information effectively,
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rather than the actual quality of the observations. Vertical thinning of profiles was performed to restrict the
number of individual measurements between two model levels to a maximum of five. A background check has
also been implemented in the system but was not activated in order to facilitate the comparison of the different
experiments by ensuring that exactly the same observations were assimilated in each case.

3.3 Data assimilation method

The data assimilation method is a variant of the multivariate incremental 3D-Var FGAT (First-Guess at Appro-
priate Time) method described in Weaver et al. (2003), Ricci et al. (2005) and Weaver et al. (2005). A short
description is given below to highlight those features of the method that are important in this study.

Let w = (T,S)T denote the model vector of temperature T and salinity S, both T and S being understood to be
row-vectors defined on the three-dimensional (3D) model grid3. Let wb = (T b,Sb)T be a background estimate
of w, and let δw = (δT,δS)T be an increment defined such that w = wb + δw. Given profile observations
of temperature (T o

i ) and salinity (So
i ) distributed over a time window t0 ≤ ti ≤ tN , 3D-Var FGAT produces an

increment δwa by approximately minimizing the quadratic cost function

J[δw] =
1
2δwT B−1

(w) δw +
1
2(Hδw−d)T R−1(Hδw−d) (1)

where d = (...,dT
i , ...)T , di = yo

i −Hiwb(ti) is the innovation vector, yo
i = (T o

i ,So
i )

T is the observation vec-
tor at measurement time ti, and Hiwb(ti) is the background counterpart of the observation vector at ti. The
background state at ti, wb(ti) = (T b

i ,Sb
i )

T , is a subset of the complete model background state vector, xb(ti) =
(T b

i ,Sb
i ,ηb

i ,ub
i ,vb

i )
T , that is obtained by integrating the model from t0 to ti from the background initial condition

xb(t0) available at the start of the window. The model integration can be represented as

xb(ti) = M(ti, ti−1)[xb(ti−1), fi] (2)

where M(ti, ti−1) denotes the nonlinear model operator between ti−1 and ti, and fi = (τx
i ,τ

y
i ,Qi,PmEi)

T denotes
the vector of external atmospheric surface fluxes used to force the ocean model on the interval t i−1 to ti. These
surface fluxes have been made explicit in (2) in order to clarify the description of the ensemble method given
in section 4 and appendix B. The matrix H = (...,HT

i , ...)T in (1) is the observation operator where Hi =
Hz

i Hh
i is a 3D interpolation operator at measurement time ti, which is formulated as the product of a horizontal

(Hh
i ) and vertical (Hz

i ) interpolation operator. Here, Hz
i is a cubic spline and Hh

i is a bilinear interpolation
operator, specially adapted to irregular grids (such as the global OPA grid) following the remapping technique
of Jones (1998).

The matrices B(w) and R contain estimates of the background- and observation-error covariances, respec-
tively. Observation errors are assumed to be mutually uncorrelated so that R = D(y) = D1/2

(y) D1/2
(y) where D1/2

(y) =

diag{σ o
T ,σ o

S }, σ o
T and σ o

S denoting row-vectors that contain estimates of the standard deviations of temperature
and salinity observation error. The specification of the observation-error standard deviations is described in
section 4. Background errors are assumed to be correlated. The covariance matrix is described by the product
of operators

B(w) = K(w) D1/2
(ŵ) F(ŵ) FT

(ŵ) D1/2
(ŵ) KT

(w) (3)

3Note that a superscript T will be used throughout the paper to indicate the transpose of a matrix or vector. Otherwise the variable
T will be used to refer to the model temperature field.
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where

F(ŵ) =

(
FT T 0

0 FSU SU

)
. (4)

D1/2
(ŵ) =

(
D1/2

T 0
0 D1/2

SU

)
, (5)

and

K(w) =

(
I 0

KST I

)
. (6)

The matrix product B(ŵ) = D1/2
(ŵ)

F(ŵ) FT
(ŵ) D1/2

(ŵ)
in (3) is block diagonal (univariate) and can be interpreted as a

background-error covariance matrix for the vector ŵb = (T b,Sb
U)T where Sb

U is an “unbalanced” background
salinity variable that is constructed to be approximately uncorrelated with T b (Weaver et al. 2005). The trans-
formation of background errors from ŵ-space to w-space is achieved using the linear balance operator K(w).
Here, K(w) is formulated so that it leaves T b errors unchanged but estimates Sb errors as the sum of balanced
(Sb

B) and unbalanced (Sb
U ) errors where the balanced component is computed directly from T b errors using the

operator KST . Following Ricci et al. (2005), KST has been parametrized in terms of the vertical gradients of
T b and Sb so that local salinity changes can be produced in response to local temperature changes to allow
approximate preservation of the background water-mass properties. The degree to which the water mass prop-
erties are preserved is controlled by the background-error standard deviation matrices D 1/2

T = diag{σ b
T} and

D1/2
SU

= diag{σ b
SU
} where σ b

T and σ b
SU

are row-vectors containing estimates of the standard deviations of temper-
ature and unbalanced salinity background errors. The main purpose of this study is to explore the potential of
an ensemble 3D-Var to provide flow-dependent estimates of these standard deviations.

The block matrices FTT and FSUSU are 3D univariate smoothing operators, each constructed as the product of a
1D and 2D anisotropic diffusion operator (Weaver and Courtier 2001). The product of F(ŵ) with its adjoint FT

(ŵ)
is, with appropriate normalization, a 3D correlation operator. The correlation functions implied by the diffusion
model are approximately Gaussian. The parameters of the 3D diffusion model are the same as those used for
the univariate T correlations in Weaver et al. (2003), except for the vertical correlation scales which have been
slightly reduced here (they are proportional to the local vertical grid depths). Identical correlation parameters
are used for T and SU . The ensemble 3D-Var could also be used to estimate parameters of the diffusion model
although this interesting possibility goes beyond the scope of the current study.

The cost function J is minimized iteratively using a conjugate gradient algorithm (Fisher 1998; Tshimanga
et al. 2008). To improve the convergence properties of the minimization, a preconditioning transformation
δv = U−1

(w)δw, where U−1
(w) = F−1

(ŵ)
D−1/2

(ŵ)
K−1

(w), is employed in (1) resulting in the modified cost function

J[δv] =
1
2

δvT δv +
1
2
(HU(w) δv−d)T R−1(HU(w) δv−d). (7)

Forty iterations are performed on each assimilation cycle, which typically results in a 9-order of magnitude
reduction of the Euclidean norm of the gradient relative to its initial value. If δva denotes the minimizing
solution of (7) then the minimizing solution of (1) is determined from δwa = U(w) δva. To produce balanced
increments for the other model state variables η , u and v, a more general variable transform is applied to the
solution δva:

δxa = Uδva = K(x) D1/2
(ŵ) F(ŵ) δva (8)
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where δxa = (δT a,δSa,δηa,δua,δva)T is the analysis increment for the complete model state vector,

K(x) =




I 0
KST I
KηT KηS
KuT KuS
KvT KvS




(9)

is the full balance operator, and B = UUT can be interpreted as a reduced-rank error covariance matrix for the
complete background state xb. The operators KηT and KηS in (9) compute a balanced SSH increment, δη a, by
integrating a density increment from a reference depth (1500m) to the surface, where the density increment is
computed from δT a and δSa using a linearized equation of state. The operators KuT , KuS, KvT and KvS compute
balanced horizontal velocity increments, δua and δva, from the geostrophic relation. Near the equator, δva is
reduced to zero while δua is balanced geostrophically using a β -plane approximation (Lagerloef et al. 1999).
A detailed description of the multivariate balance operator can be found in Weaver et al. (2005).

The increment δw and background-error covariance matrix B(w) are formally defined with respect to wb. In
3D-Var, wb can be chosen from any background state xb(ti) within the window. Following Weaver et al. (2003)
and Ricci et al. (2005), we take wb to be the background state at the start of the window. This state is used
to define the linearization state in the T -S balance. It is also used in the parameterized formulation of the
background-error variances with respect to which the ensemble-generated variances will be compared.

The technique of Incremental Analysis Updates (IAU; Bloom et al. 1996) is used to introduce the analysis
increment gradually into the ocean model in order to minimize spurious adjustment processes. In this study,
IAU is applied over the entire window; i.e., given δxa, the model integration from t0 to tN is repeated using a
prognostic equation of the form

xa(ti) = M(ti, ti−1)[xa(ti−1), fi]+Fiδxa (10)

where xa(t0) = xb(t0), and Fi is a weighting function defined such that ∑N
i=1 Fi = 1. The weighting function has

been formulated to give maximum weight in the centre of the window, with the weighting reduced linearly to
a small value at the window end-points. Such weighting provides a smooth transition of the analysis trajec-
tory from one assimilation cycle to the next. An assimilation window of tN = 10 days has been used for the
experiments in this study. The procedure for cycling the 3D-Var is represented schematically in Fig. 1.

4 Specification of the observation- and background-error variances

4.1 Observation-error variance matrix: D(y)

Two formulations of the observation-error variance matrix have been tested in this study. The first formulation,
denoted D(1)

(y), is based on a simple analytical function that depends, except near coastlines, on depth only. The
function has been constructed to provide an approximate fit to the vertical profiles of globally averaged temper-
ature and salinity observation-error standard deviations (σ o) estimated by Ingleby and Huddleston (2007) (see
their Table 3). For temperature, σ o is maximum at 75 m depth where it has a value of 1◦C compared to 0.75◦C
at the surface and its minimum value of 0.07◦C in the deep ocean. For salinity, σ o decreases exponentially with
depth from 0.18 psu at the surface to a minimum value of 0.02 psu in the deep ocean. Near coastlines, where
our coarse resolution model is a poor representation of the real ocean, the σ o profiles have been inflated. The
inflation factor has been set to a value of two directly at the coastline and decreases smoothly to a value of one
beyond 300 km from the coastline.
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cycle c− 1 cycle ct0 tN t0 tN

x
a
c−1(tN ) = x

b
c(t0)

x
a
c
(tN ) = x

b
c+1(t0)

time

Figure 1: Schematic illustration of the procedure used to cycle 3D-Var. On each cycle c, the model is integrated from t0
to tN starting from a background initial condition xb

c(t0) (grey dots) to produce the background trajectory xb
c(ti) (black

solid curve). The difference between the observations yo
c,i (black dots) and their background counterpart (Hc,ixb

c(ti)) is
computed (represented by the vertical thin dotted lines) for use in the 3D-Var FGAT minimization. After minimization, the
model integration is repeated from the same initial condition (xb

c(t0)) but with the analysis increment applied using IAU.
This produces the analysis trajectory xa

c(ti) (grey dashed curve). The updated model state xa
c(tN) at the end of cycle c is

then used as the background initial condition for the next cycle c+1 (grey dots).

The second formulation, denoted D(2)
(y), employs geographically-dependent temperature and salinity σ o that have

been estimated using a statistical method originally proposed by Fu et al. (1993). The method has been widely
used in ocean data assimilation (Fukumori 2000; Menemenlis and Chechelnitsky 2000; Leeuwenburgh 2007).
Given a vector wc = (T c,Sc)T of temperature and salinity fields computed from a model integration without
data assimilation (the control run in this study), the Fu et al. method estimates the observation-error variances
from the covariance between co-located observation and observation-minus-control anomalies:

D(2)
(y) = diag

{
yo

i
′ (yo

i
′−Hiwc

i
′ )T
}

(11)

where the overbar indicates an appropriate time and spatial average, and the prime indicates anomaly with re-
spect to this average. A derivation of (11) is given in appendix A. In particular, it involves a crucial assumption
that the true state be uncorrelated with the errors in both the observations and the control state. While this as-
sumption may be difficult to justify theoretically, it may not be particularly severe when viewed in combination
with other practical assumptions made in quasi-operational data assimilation systems such as ours.

The variance computation has been performed using all in situ data between January 1962 and December 2002
contained in the ENSEMBLES data-set (see section 3.2). Estimates have been made at each model grid point
by averaging covariances within that model grid cell. In some regions, such as the deep ocean and Southern
Hemisphere, the σ o are grossly underestimated due to the sparseness of the data. To avoid this problem, the
Ingleby and Huddleston variances were imposed as minimum values. The σ o were then smoothed in each
level by applying a local two grid-point Shapiro filter. Finally, the model-gridded σ o were interpolated to the
observation locations using the observation operator, and inflated near coastlines as in D(1)

(y). Both D(1)
(y) and D(2)

(y)
provide estimates of only the stationary component of σ o. No attempt was made to estimate a time varying
component of σ o due to the sparseness of the data.

The global profiles of σ o computed from (11) (figure not shown) have similar characteristics to those of Ingleby
and Huddleston (2007) although are noticeably larger above 1500 m. For temperature, the largest difference
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between the two estimates is 0.3◦C and occurs near the maximum value of σ o at 75 m. For salinity, the
largest difference is 0.05 psu and occurs at the surface. The geographical distribution of σ o is illustrated in
Fig. 2 for temperature at depths 50 m and 500 m. These are the estimates of σ o computed directly from
(11), before additional filtering and processing to fill in data-sparse regions. The fields are roughly similar to
those estimated by Leeuwenburgh (2007), exhibiting largest σ o (up to 3◦C) in regions characterized by strong
internal variability. At both depths, σ o is large in western boundary current regions, in particular the Gulf
Stream, Kuroshio, Agulhas and Malvinas Current regions, where there is significant mesoscale activity that our
coarse resolution model cannot resolve. The large values of σ o in these regions thus probably reflect a large
representativeness error component in the observation error. At 50 m (Fig. 2a), σ o is also large in the eastern
parts of the tropical Pacific and Atlantic Oceans where this depth coincides with the thermocline. Between 50-
200 m (not shown), the large patterns of σ o near the equator in the tropical Pacific migrate toward the central
and western parts of the basin, commensurate with the deepening of the thermocline from east to west. At
500 m (Fig. 2b), the σ o remain large only in mid-latitude boundary current regions.

(a) σo
T at 50 m (b) σo

T at 500 m

Figure 2: Model-gridded standard deviations of observation error (σ o) for temperature at a) 50 m and b) 500 m, estimated
using the Fu et al. method.

4.2 Background-error variance matrix: D(ŵ)

Two flow-dependent formulations of the background-error variance matrix have been tested in this study. The
first formulation, denoted D(1)

(ŵ)
, is based on an empirical parameterization. For temperature, the background-

error standard-error deviations (σ b) are parameterized in terms of the vertical gradient of the background tem-
perature field so that large σ b are concentrated at the level of the thermocline where thermal variability is
greatest. Weaver et al. (2003) illustrate how this simple variance parameterization can capture some of the dy-
namical effects implicit in 4D-Var. A similar parameterization is used in the operational ocean data assimilation
systems at the National Centers for Environmental Prediction (Behringer et al. 1998) and ECMWF (Balmaseda
et al. 2008). The parameterization is described by the equation

σ b
T =

{
max

(
σ̃ b

T , σ ml
T
)

in the mixed layer,
max

(
σ̃ b

T , σ do
T
)

below the mixed layer, (12)

where
σ̃ b

T = min(|(∂T/∂ z|T =T b) δ z| , σ max
T ) , (13)

σ max
T being the maximum-allowed value of σ b

T , δ z a vertical scale, and σ ml
T and σ do

T lower bounds in the mixed
layer and deep ocean, respectively. In this study, as in Weaver et al. (2005), σ max

T = 1.5◦C, δ z = 10 m, σ ml
T =
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0.5◦C, and σ do
T = 0.07◦C. Finally, the σ b

T was smoothed in each model level using a diffusion (Gaussian) filter
with geographically dependent length scales identical to those specified in the horizontal correlation operator.

For unbalanced salinity, σ b is defined somewhat ad hocly according to the equation

σ b
SU =

{
σ max

SU
if z > zmax

σ max
SU

α(z) if z ≤ zmax
(14)

where σ max
SU

= 0.25 psu, zmax is the depth of the maximum of |(∂S/∂T |T=T b)| ≡ |(∂S/∂ z|S=Sb)(∂ z/∂T |T=T b)|,
and

α(z) = 0.1+0.45×{1− tanh (2 ln (z/zmax))} (15)

is a weighting coefficient that decreases with depth. The above parameterization thus defines the largest σ b
SU

between the surface and the level of maximum S(T ) gradients. This is especially important in the mixed layer
since there salinity is described primarily by its unbalanced component (Ricci et al. 2005). The empirical
formulation of σ b will serve as a reference for evaluating the ensemble-generated σ b described below.

The second formulation, denoted D(2)
(ŵ)

, is derived from an ensemble method which is similar to the method
employed in the meteorological variational data assimilation studies of Fisher (2003), Žagar et al. (2005) and
Berre et al. (2006). Appendix B provides the mathematical basis of the method. There it is shown how a
perturbed cycled analysis/forecast system leads to identical linearized evolution equations for the analysis and
forecast state perturbations as those for the true errors. Consequently, if the perturbations to the input parameters
are constructed to have covariance matrices equal to those of the true errors then, to first order, the evolving
analysis/forecast perturbations of the ensemble will also have covariance matrices equal to those of the true
errors.

The method for cycling the ensemble analysis/forecast system is summarized schematically in Fig. 3. Assuming
that the different ensemble members are uncorrelated then, as discussed in appendix B (see equation (58)),
D(ŵ) can be estimated from the difference between background states wb

l (t0) of successive ensemble members,
l = 0, . . . ,L:

D(2)
(ŵ)

= diag
{

1
2(L−1)

L

∑
l=0

[
K−1

(w)

(
wb

l (t0)−wb
l+1(t0)

)][
K−1

(w)

(
wb

l (t0)−wb
l+1(t0)

)]T
}

(16)

where

K−1
(w) =

(
I 0

−KST I

)
(17)

and wb
L+1(t0) = wb

0(t0). Equation (16) can be related to (58) by noting that wb
l (t0) = wb

l,c(t0) = wa
l,c−1(tN) where

c is the cycle number. Equation (17) is the inverse of the balance operator (6) and is needed in order to estimate
σ b for ŵ as required by the covariance model (3).

Key to the design of the ensemble system is the construction of the perturbations for the system input param-
eters. In appendix B, the ensemble method is developed while considering a general set of input parameters
consisting of the external surface forcing fields, initial state, observations, and model-error source terms. Ide-
ally, the perturbations should be chosen to sample the true statistical uncertainty in these parameters. The true
error statistics of the input parameters are unknown and must be approximated in practice. In this study, the
perturbations ε̃ f

l,i, l = 1, . . . ,L, to the surface fields (wind-stress, heat flux, PmE) are defined from differences
between different analysis products (see below). The perturbations ε̃o

l,i to the observations are drawn from a
Gaussian distribution with covariance matrix equal to the diagonal R-matrix used in the assimilation system.
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yo
c,i + ε̃o

1,c,ifc,i + ε̃ f
1,c,i

xa
1,c−1(tN) Background

trajectory Analysis Analysis
trajectory

xb
1,c(ti) δxa

1,c xa
1,c(tN)

fc,i + ε̃ f
1,c,i

yo
c,i + ε̃o

L,c,ifc,i + ε̃ f
L,c,i

xa
L,c−1(tN) Background

trajectory Analysis Analysis
trajectory

xb
L,c(ti) δxa

L,c xa
L,c(tN)

fc,i + ε̃ f
L,c,i

cycle c

D(ŵ),c+1D(ŵ),c

Figure 3: Schematic illustration of the ensemble 3D-Var system. The ensemble of analysis states xa
l,c−1(tN), l = 1, . . .L,

at the end of cycle c− 1 are used to initialize the background trajectories of each ensemble member on the next cycle
c. The background trajectory of each member l is produced by integrating the model with a perturbed set of forcing
fields (wind-stress, heat flux, PmE), fc,i + ε̃ f

l,c,i, from the initial condition xb
l,c(t0) = xa

l,c−1(tN). Each background trajectory
is compared with a set of perturbed observations yo

c,i + ε̃o
l,c,i to produce an innovation vector for each member l. A

3D-Var (FGAT) analysis is then performed for each ensemble member using the appropriate innovation vector and a
background-error variance matrix D(ŵ),c that has been estimated from the ensemble of background initial states xb

l,c(t0).
The unperturbed member (l = 0), which is not displayed, is also used to compute D(ŵ),c (see equation (58)). The resulting
analysis increment is then used to produce an analysis state trajectory as described in Fig. 1.

The background initial state perturbations ε̃b
l (t0) = ε̃b

l,c(t0) are set to zero on the first cycle (c = 1). On subse-
quent cycles, these perturbations are defined implicitly as the difference between the perturbed and unperturbed
background states (ε̃b

l (t0) = xb
l,c(t0)− xb

0,c(t0)). Perturbations associated with model error ε̃q
l,i are neglected

altogether in this study.

The perturbations to the surface forcing fields have been derived by ECMWF where they are used to pro-
duce ensembles of initial conditions for operational seasonal forecasting (Balmaseda et al. 2008). They have
also been used by various groups for ocean analysis production in the ENSEMBLES project. For wind-
stress, the perturbations are computed from differences between monthly mean anomalies from the ERA40
and NCEP/NCAR reanalysis products. Perturbations to the fresh-water flux have been introduced in the pre-
cipitation field only, and are computed from differences between monthly mean anomalies of bias-corrected
ERA40 and NCEP/NCAR precipitation fields. To define the forcing perturbations for a given date and a given
ensemble member, the perturbations are chosen randomly among the various difference fields that have the
same calendar month (a sample of 44). Finally, daily perturbations of wind-stress and fresh-water flux are
computed from the monthly fields using linear interpolation.

Perturbations of SST are used as a proxy for perturbations in heat flux, and are derived from differences between
daily anomalies from different Reynolds products (2DVAR and OIv2). The SST perturbations for a given date
and ensemble member are constructed following the same random-selection procedure used for the wind-stress
and fresh-water flux perturbations. The procedure leads to a set of daily SST perturbations that, for a given
member, are uncorrelated from one day to the next. To remove the temporal discontinuity, the daily SST
perturbations have been smoothed in time using a two-pass recursive filter which is equivalent to correlating
the perturbations with a second-order auto-regressive function (Purser et al. 2003). A filtering time-scale of 7
days was used. The perturbations were then rescaled to ensure that the globally averaged standard deviation
was the same before and after filtering.
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Four sets of surface forcing field perturbations were generated using the procedure above. Eight perturbed
forcing fields were then produced by adding and subtracting the four forcing perturbations from the unper-
turbed fields. A different set of randomly perturbed observations were defined for each of the eight branches
involving different forcing fields. The eight perturbed branches plus the unperturbed branch give a 9-member
ensemble. Variances computed from this relatively small ensemble size were too noisy to be used directly in the
assimilation system. In order to increase the sample size, a sliding window was used to include the ensemble
of background states from the previous 9 cycles (90 days) in the computation of the variances for the current
cycle. This effectively increased the ensemble size to 81. Assuming Gaussian statistics, the standard error in
the estimated standard deviation for an ensemble size L is 1/

√
2L (e.g., see Barlow (1989), p.89). Thus, with

L = 81, the error is 8% compared to 24% with L = 9. A 17-member ensemble with four perturbed observation
branches for each perturbed forcing branch was also tested (with and without a 9-cycle sliding window) but
did not lead to noticeable improvements over the 9-member ensemble (with 9-cycle sliding window) to justify
the extra computational cost. The use of a sliding window represents a compromise between the desire to have
truly flow-dependent background-error variances, on the one hand, and to reduce sampling error, on the other.
In particular, with the 90-day window used here, background-error variations on intraseasonal time-scales are
filtered out and those on seasonal time-scales are strongly damped. Maximum values of 3.0◦C and 0.8 psu and
minimum values of 0.07◦C and 0.01 psu were used as bounds for the ensemble σ b.

5 Results

Four experiments were performed over the period 1993-2000 to test the sensitivity of the analyses to the dif-
ferent background- and observation-error variance formulations presented in the previous section. Experiment
B1R1 uses the parameterized σ b and simplified σ o. This experiment and the control (CTL) are our reference
experiments. Experiment B1R2 uses the parameterized σ b and the σ o estimated using the Fu et al. method.
The reanalysis experiments conducted by CERFACS in ENACT (Davey et al., 2006) and ENSEMBLES used
the variance specifications in B1R1 and B1R2, respectively. Experiment B2R2 uses the ensemble σ b, and the
σ o from the Fu et al. method. The parameterized σ b were used to initialize B2R2 on 1 January 1993 but were
then replaced with the ensemble σ b 180 days after cycling. All time-averaged statistics presented in this sec-
tion exclude the first year of the experiments. The different ensemble members of B2R2 produced statistically
similar results. Unless stated otherwise, results from B2R2 will be presented from the unperturbed member.
The assimilation experiments are summarized in Table 1.

Our objective in this paper is to provide an overall assessment of the relative performance of the different
experiments, so we focus mainly on global diagnostics in this section. An exception is in section 5.6 where re-
sults involving comparisons with independent data are presented for the northwest Atlantic and tropical Pacific
regions.

Experiment name D(1)
(ŵ)

D(2)
(ŵ)

D(1)
(y) D(2)

(y)

B1R1 X X
B1R2 X X
B2R2 X X

Table 1: Summary of the background- and observation-error variance matrix formulations used in the different exper-
iments. The matrices D(1)

(ŵ)
and D(2)

(ŵ)
contain the parameterized and ensemble-estimated background-error variances,

respectively. The matrices D(1)
(y) and D(2)

(y) contain the simplified and Fu et al.-estimated observation-error variances,
respectively.
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5.1 Geographical distribution of σ b

Figure 4 shows an example of the parameterized estimates of the σ b
T from B1R2 (upper panels) and the cor-

responding ensemble estimates of the σ b
T from B2R2 (lower panels) obtained near the end of the assimilation

period (27 August 1999). The fields are displayed at depths of 50 m (left panels) and 500 m (right panels). The
spatial structures of the two estimates of σ b

T are generally very different. Large σ b
T in the parameterized esti-

mates occur in areas where the background temperature profile is strongly stratified. The large patterns at 50 m
in the Northern Hemisphere reflect the increased stratification of the seasonal thermocline in the boreal summer
(Fig. 4a). The parameterized estimates are also noticeably smoother than the ensemble estimates, largely as a
result of the spatial filtering that is applied to the former. The ensemble σ b

T at both depths are characterized by
large estimates in the tropical Pacific, tropical Atlantic, and northwest Atlantic. The upper ocean thermal fields
in the tropical Pacific and northwest Atlantic are relatively well observed and strongly influenced by the surface
forcing so there the observation and forcing perturbations are expected to have a large impact. In those regions,
the ensemble σ b

T can be slightly larger than the parameterized σ b
T (values reach 1.9◦C at a few isolated points).

On the other hand, the parameterized σ b
T , by construction, never exceed 1.5◦C (note that the maximum values

in all panels have been cut off at 1.2◦C). At both depths, there are also large areas of the ocean, particularly
in the Southern Hemisphere, where the ensemble σ b

T are small. Furthermore, in contrast to the parameterized
σ b

T , the ensemble σ b
T do not display any obvious dependence on the seasonal thermocline, possibly due to the

90-day sampling window used to construct them.

The large values of the ensemble σ b
T in the northwest Atlantic, particularly at 500 m, are in sharp contrast to

the parameterized σ b
T which have no discernible signal there due to the weak stratification in the background

temperature profile at this depth. Large σ b will act to reduce the weight of the background relative to the data.
In B2R2, the large σ b

T in the northwest Atlantic are largely compensated by large σ o
T estimates (Fig. 2). This was

vital in B2R2 to avoid overfitting the data in this region which could otherwise lead to numerical instabilities.
Indeed, this was the case when the ensemble σ b were initially used in combination with the simplified σ o

estimates, and subsequently led us to implement the Fu et al. method.

5.2 Vertical profiles of σ b and σ o

The vertical profiles of the prescribed σ b and σ o are illustrated in this section for the different experiments.
For consistency with the observation-space diagnostics presented later in this paper, both σ b and σ o have been
evaluated by first computing the variances (σ b)2 and (σ o)2 at observation points, then averaging the variances
in space and time, and finally taking the square root to obtain the standard deviations. Here, the spatial averaging
is performed over the global region and within the vertical model grid cells, and the time averaging is performed
over the 1994-2000 period. The specified background-error variances (σ b)2 at observation points correspond
to the diagonal elements of HB(w)HT . To compute the diagonal of HB(w)HT requires a specific algorithm
since this matrix is only available in operator form in our system. The diagonal elements can be estimated at
a reasonable cost using a randomization algorithm (Andersson et al. 2000). Specifically, given an ensemble
of Gaussian random vectors vm, m = 1, . . . ,M, drawn from a population with zero mean and unit variance
(E[vm] = 0 and E[vmvT

m] = I where E[·] is the expectation operator) then

HB(w)HT ≈ 1
M−1

M

∑
m=1

(
HU(w)vm

)(
HU(w)vm

)T (18)

where B(w) = U(w)UT
(w) (see section 3). On each cycle, (18) was used with an ensemble of M = 100 random

vectors to produce an estimate of σ b at observation points, with an estimated error of approximately 7%.
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(a) Parameterized σ b
T at 50 m (b) Parameterized σ b

T at 500 m

(c) Ensemble σ b
T at 50 m (d) Ensemble σ b

T at 500 m

Figure 4: The temperature σ b field on 27 August 1999 from experiment B1R2 (upper panels) and experiment B2R2 (lower
panels) at 50 m (left panels) and 500 m (right panels). For B2R2, the σ b field is computed from analysis-state samples
extending nine 10-day cycles into the past (a total of 81 samples). The maximum value in the colour bar has been set to
1.2◦C in the left panels and to 0.4◦C in the right panels (light pink shaded areas), but can reach up to 1.5◦C, 1.9◦C and
0.6◦C in the upper left, lower left and lower right panels, respectively.
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Figure 5 shows vertical profiles of the specified σ o and σ b for temperature (left panels) and salinity (right
panels). At all depths, but especially in the upper 200 m, the ensemble-estimated σ b of B2R2 are smaller than
the parameterized σ b of B1R1 and B1R2, while the Fu et al.-estimated σ o of B1R2 and B2R2 are larger than
the simplified σ o of B1R1. The ratio (σ b)2[(σ b)2 +(σ o)2]−1, displayed in the lower panels, roughly indicates
the average weight given to an innovation at a particular depth in determining the analysis increment (see
equations (43) and (44)). For B2R2, the weights are noticeably smaller and more uniform with depth compared
to those from B1R1 and B1R2. As a result, the analysis on each cycle of B2R2 will tend to remain closer to
the background state than it will in either B1R1 or B1R2 which will tend to pull it more to the observations,
especially in the upper 200 m.

5.3 Assimilation statistics

The innovation vector, d = yo −Hwb, and analysis increment, δwa, provide valuable information for assessing
the statistical performance and internal consistency of the assimilation system (Desroziers et al. 2005). In this
section, we examine mean statistics of d and the analysis residual, r = d−Hδwa, where these vectors, with the
time index omitted, are understood to contain the innovation vectors and analysis residuals from all cycles in
the 1994-2000 period. The analysis residual r (simply called the residual in what follows) corresponds to the
value, at the minimum, of the difference field in the observation term of the 3D-Var FGAT cost function (1).
Whereas r quantifies the fit to the data achieved by the assimilation method, it does not represent the actual fit
to the data achieved after correcting the model integration using IAU, which is given by r̃ = yo −Hwa. Indeed,
by construction, the IAU procedure does not produce a close fit to the data near the beginning of each cycle so
that, in general, ‖r̃‖ > ‖r‖.

Figure 6 shows the vertical profiles of the time-mean of the globally averaged residual (upper panels) and
innovation vector (lower panels) for temperature (left panels) and salinity (right panels). A non-zero mean in
the innovations and residuals is an indication of bias (systematic error) in the system (Dee and Todling 2000;
Balmaseda et al. 2007). In CTL there is a large negative bias above 200 m in both the temperature and salinity
innovations (Figs. 6c and d), where the model without data assimilation is, on average, too warm (up to 0.7◦C)
and too salty (up to 0.6 psu) compared to observations. The mean temperature innovations change sign near
250 m suggesting that the model is biased cold below this level. The mean salinity innovations are very small
below 200 m, possibly as a result of the subsurface relaxation to climatology. The mean innovations are reduced
substantially, especially for salinity, in all assimilation experiments. The mean residuals are slightly smaller
than the mean innovations. They are smallest for B1R1 (grey shade) which is understandable since the σ o in
B1R1 are smaller than those used in B1R2 and B2R2, so that the assimilation method will tend to give more
weight to the observations in B1R1 than in B1R2 and B2R2. In all experiments, the remaining biases, while
much smaller than in CTL, are still significant, the largest being at the surface in B2R2 where the maximum
innovation biases are approximately -0.3◦C and -0.11 psu.

Figure 7 shows vertical profiles of the standard deviation (sd) of the residual and innovation vectors:

sd(z) =

√
(z− z)2 (19)

where z = d, r or r̃, and the overbar indicates spatial average over the globe and within vertical model grid
cells, and temporal average over the 1994-2000 period. The standard deviation indicates how well the model
fits the observed temporal and spatial variability. The CTL exhibits large errors in both temperature and salinity,
particularly in the upper 150 m where signals associated with seasonal and interannual variability are largest.
Maximum differences are 2.25oC for temperature and 1.65 psu for salinity. Relative to CTL, all assimilation
experiments improve the fit to the observed temperature and salinity variability at all depths. This is true on
the global average (Fig. 7) although in the equatorial Pacific (figure not shown) the salinity variability below
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Figure 5: Vertical profiles of σ b (upper panels) and σ o (middle panels) for temperature (left panels) and salinity (right
panels) in B1R1 (grey shaded areas), B1R2 (solid curves) and B2R2 (dashed curves). The ratio (σ b)2[(σ b)2 +(σ o)2]−1

is displayed in the lower panels. The solid and dashed curves coincide in the upper panels. Both (σ b)2 and (σ o)2 have
been computed at observation points, temporally averaged over the 1994-2000 period, and spatially averaged over the
global region and within vertical model grid cells.
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Figure 6: Vertical profiles of the 1994-2000 time-mean of the globally averaged innovations (d = yo−Hwb; lower panels)
and analysis residuals (r = d−Hδwa; upper panels) for temperature (left panels) and salinity (right panels) for CTL (thin
dotted curves), B1R1 (grey shaded areas), B1R2 (solid curves) and B2R2 (dashed curves). Values have been averaged
onto model levels. For CTL the innovation and residual are identical (δwa = 0).
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Figure 7: Same as Fig. 6 but the standard deviation of the innovations (sd(d)) and analysis residuals (sd(r)) as defined by
(19).
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50 m was found to be slightly degraded in B1R1 and B1R2, but not in B2R2, which points to a deficiency in
the parameterized estimates of σ b

S . Differences between B1R1 and B1R2 are small (shaded and solid curves).
B1R1 displays slightly smaller sd(r) in salinity around 100 m and in temperature at all depths, whereas B1R2
displays slightly smaller sd(d) in both temperature and salinity in the upper 100 m. This illustrates that a better
fit to the data (achieved in B1R1 by reducing σ o) does not necessarily translate into a better model forecast.
The differences arising from using the ensemble σ b (B2R2; dashed curves) are larger, with both sd(r) and sd(d)
being increased relative to those in B1R1 and B1R2, especially near the surface.

At first sight it appears that the use of the ensemble σ b has slightly degraded the performance of the assim-
ilation system. Closer inspection of Fig. 7, however, reveals that, while the innovations are larger in B2R2,
the difference between the residuals and innovations is smaller than in B1R1 and B1R2, particularly in the
upper 100 m where the difference is 0.1oC and 0.05 psu smaller. This result then suggests that the rate of loss
of information between 10-day assimilation cycles is smaller in B2R2 than in B1R1 and B1R2. This can be
quantified by considering the relative percentage difference between the standard deviation of the innovation
vector and that of the actual residual (r̃): R = 100×{sd(d)− sd(r̃)}/sd(d). This diagnostic can be appreciated
only in combination with Fig. 7 which measures the actual fit to the data. For example, the control has zero
information loss (R = 0 since sd(r̃) = sd(d)) but is clearly inferior to the assimilation experiments in terms of
the fit to the data. Figure 8 shows vertical profiles of R for temperature (left panel) and salinity (right panel).
The information loss rate in B2R2 is smallest at all depths, with values ranging between 5%–6% for temper-
ature and 9%–17% for salinity. The error growth rates are considerably larger in B1R1 and B1R2, especially
above 150 m, where values reach up to 18% (respectively, 14%) for temperature and 45% (respectively, 33%)
for salinity.
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Figure 8: Vertical profiles of the information loss rate R = 100×{sd(d)− sd(r̃)}/sd(d) for temperature (left panel) and
salinity (right panel) in B1R1 (grey shaded areas), B1R2 (solid curves) and B2R2 (dashed curves).

5.4 Specified versus diagnosed σ b and σ o

The difficulty in defining background- and observation-error statistics means that they are likely to be incor-
rectly specified in a practical data assimilation system. Desroziers et al. (2005) discuss how the innovations
and analysis increments generated by a data assimilation system can be used to diagnose a posteriori the co-
variances of observation error and background error in observation space. Assuming that the background and
observation errors are mutually uncorrelated, and that their covariance matrices are good approximations to the
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true error covariance matrices, then the covariance matrix of the innovation vector satisfies

E[ddT ] ≈ HB(w)HT +R. (20)

This classical result is easily derived using the expression for the innovation vector in terms of the background
and observation errors, given by (45) in Appendix B. Furthermore, using the analysis equation (43), it is
straightforward to show that the individual components of (20) satisfy

E[d(Hδwa)T ] ≈ HB(w)HT (21)

and

E[d(d−Hδwa)T ] ≈ R. (22)

The left-hand sides of (21) and (22) can be estimated using statistics from the assimilation system, while the
right-hand sides of these equations are the specified covariance matrices discussed earlier. In this section,
these expressions are used to check the consistency of the specified standard deviations (σ b and σ o) with those
diagnosed using assimilation statistics. The analysis focuses on the time- and horizontally-averaged component
of the standard deviations. As in (19), the mean bias has been removed from d and Hδwa in estimating the
standard deviations from (21) and (22).

Figure 9 shows vertical profiles from B2R2 of the specified σ b and σ o (solid curves) and the diagnosed σ b and
σ o (dashed curves) estimated from (21) and (22) using the innovation and analysis increments from all cycles
between 1994-2000. The specified σ b are identical to those displayed earlier in Fig. 5 (dashed curves). In
B2R2, the specified σ b

T and σ b
S are everywhere underestimated compared to the diagnosed values (Figs. 9a and

c), whereas the specified σ o
T and σ o

S are overestimated compared to the diagnosed values, apart from the upper
30 m where the σ o

S are slightly underestimated (Figs. 9b and d). The maximum specified-minus-diagnosed
differences are -0.45◦C and -0.4 psu for σ b

T and σ b
S , and 0.4◦C and 0.15 psu for σ o

T and σ o
S . It is interesting to

note that the structure and amplitude of the diagnosed σ b
T , and to a lesser extent the diagnosed σ b

S , are closer to
those of the parameterized σ b

T and σ b
S than the ensemble σ b

T and σ b
S (cf. Fig. 5). The ensemble and diagnosed

σ b
S in particular exhibit large differences in the upper 200 m. Compared to B2R2, there is better consistency

between the diagnosed and specified σ b in B1R2 (Figs. 10a and c), although this seems to be achieved at the
expense of degrading the consistency between the diagnosed and specified σ o (Figs. 10b and d).

The results in Fig. 9 suggest that the ensemble 3D-Var system produces background (and analysis) perturbations
with inadequate spread on a global average. This apparent deficiency is not unique to our system but is a com-
mon problem in other ensemble data assimilation systems as well (e.g., see Houtekamer and Mitchell (2005)
for a discussion within the context of the EnKF). This issue is discussed further in section 6. The apparent over-
estimation of σ o, on the other hand, points to limitations in our simple model of the observation error statistics,
which ignores spatial and temporal correlations and employs time-independent variance estimates derived from
a method that is itself subject to assumptions of questionable validity. Care must be taken, however, in inter-
preting Fig. 9 since the diagnosed σ b and σ o are not necessarily the optimal values of σ b and σ o that should
have been specified. Any attempt to adjust σ b or σ o on the basis of (21) and (22) will ultimately lead to a
new set of innovations and analysis increments which in turn will lead to new diagnostic estimates of σ b and
σ o. The procedure for adjusting σ b and/or σ o is thus iterative and inherently nonlinear, with no guarantee
of convergence. Desroziers et al. (2005) present an adaptive algorithm that employs (21) and (22) to update
the background-error variances (at observation points) and observation-error variances in a cycled assimilation
system. We have made no attempt to apply the method in the current study but it offers an interesting possibility
for improving the variance estimates in future applications of our assimilation system. Furthermore, as pointed
out by Talagrand (1999), consistency between the diagnosed and specified statistics is neither a necessary nor a
sufficient condition for optimality of the assimilation system. Indeed, as shown later in section 5.6, comparing
the analyses with observations that were not assimilated indicates that B2R2 is superior to B1R2 despite having
poorer internal consistency in the σ b statistics.
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Figure 9: Vertical profiles of σ b (left panels) and σ o (right panels) for temperature (upper panels) and salinity (lower
panels) in B2R2. Solid curves correspond to the σ b and σ o that were specified in the assimilation experiment; dashed
curves correspond to the σ b and σ o that were diagnosed a posteriori using (21) and (22). The specified σ b and σ o are
identical to those displayed by dashed curves in Fig. 5.
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Figure 10: Same as Fig. 9 but for B1R2.
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5.5 Temporal variability of the ensemble and assimilation statistics

The results presented so far have highlighted time-averaged aspects of the assimilation performance. In this
section, time-varying aspects will now be evaluated, focusing on results from the ensemble experiment B2R2.
Figures 11a and b show time-series of the 1993-2000 ensemble spread (the square root of the ensemble vari-
ance) of the observation-space analysis Hiwa

l (ti) (light grey shade) and background Hiwb
l (ti) (black shade),

computed with respect to all ensemble members l = 0, . . . ,8:

spread{Hiwa,b} =

√√√√1
8

8

∑
l=0

(
Hiwa,b

l (ti)−
1
8

8

∑
l=0

Hiwa,b
l (ti)

)2

(23)

where the overbar indicates spatial average over the globe and within vertical model grid cells, and tempo-
ral average over 30-day intervals. A well-defined ensemble should have a spread characteristic of the actual
uncertainty in the model state. Figures 11a and b show that the spread in both temperature and salinity is sys-
tematically smaller in the analysis than in the background, as one would expect. The spread appears to stabilize
around mean values of 0.1◦C and 0.035 psu, after an initial increase during the first 6 months of the experiment.
In other words, there is no evidence of ensemble collapse. The decrease in the spread from mid-1993 onwards
corresponds to the time when the parameterized σ b are replaced with the ensemble σ b. The variability of the
spread is larger for salinity than for temperature, which is mainly associated with increased sampling error due
to the fewer number of salinity observations. It is interesting to note that the values of the mean spread are sim-
ilar to those computed in the stochastic EnKF system of Leeuwenburgh (2007) (see his Fig. 3 for the tropical
Pacific region). His system was based on a different ocean model as well as a different assimilation method,
but employed a similar perturbation strategy to ours, involving random perturbations to the atmospheric forcing
fields and observations.

Figures 11c and d show corresponding time-series of the sd(r̃i) (light grey shade) and innovation sd(di) (black
shade) of the unperturbed ensemble member l = 0, as given by (19) but with the temporal averaging operator
defined as in (23). Both sd(r̃i) and sd(di) are about one order of magnitude larger than the spread of the
(observation space) analysis and background (upper panels). The spread of the background state at observation
points roughly corresponds to the prescribed values of σ b at observation points, as can be seen by comparing
the magnitudes of the temperature and salinity spread in Figs. 11a and b with those of the prescribed mean σ b

T
and σ b

S profiles in Figs. 5a and c (dashed curves). For both temperature and salinity, the magnitude of sd(d i)
is at all times comparable to that of the mean σ o in Figs. 5b and d, which is consistent with (20) in view of
the relatively small ensemble spread that defines σ b. Despite the small spread, sd(di) (and sd(r̃i)) of B2R2 is
consistently much smaller than sd(di) of CTL (dark grey shade). The variability in CTL and B2R2 is relatively
coherent, especially for temperature which displays an annual cycle with smallest sd(d i) (and sd(r̃i)) in the
boreal winter.

5.6 Comparison with independent data

The diagnostics presented in the previous sections have focused on the model variables (temperature and salin-
ity) that are directly constrained by the observations. In this section, model variables (SSH and velocity) that
are not directly constrained by the observations are examined and validated against independent data. Table 2
shows correlation coefficients and Root-Mean-Square (RMS) errors of the 1993-2000 SSH anomalies between
TOPEX/POSEIDON (T/P) and those of the various experiments. The regions considered are the northwest
extratropical Atlantic (75◦W-40◦W, 30◦N-60◦N) and NINO3.4 (170◦W-120◦W, 5◦S-5◦N) in the tropical Pa-
cific. In the northwest extratropical Atlantic, the CTL has the highest correlation and lowest RMS error of all
experiments, which suggests that data assimilation is degrading the SSH field to some extent in this region. Of
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Figure 11: Upper panels: 1993-2000 time-series of the ensemble spread at observation points (upper panels) for the
background, Hiwb(ti) (black shaded area), and analysis, Hiwa(ti) (light grey shaded area), in B2R2. Lower panels:
1993-2000 time-series of the standard deviation of the innovation vector, sd(di) (black shaded area), and of the residuals,
sd(r̃i) (light grey shaded area), in B2R2. The standard deviation of the innovation in CTL (dark grey shaded area) is also
shown. Temperature and salinity are displayed in the left and right panels, respectively. Values have been been computed
for the global region and averaged into 30-day intervals.
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the assimilation experiments, B2R2 compares best with T/P, while B1R1 compares worst. Since the closest fit
to the in situ data was achieved in B1R1, followed by B1R2 and then B2R2 (see Figs. 6 and 7), this further
suggests that the SSH field degrades in this region as the model fit to the in situ data improves. In contrast,
in NINO3.4, the assimilation experiments give similar statistical performance. Relative to CTL, they exhibit
a slight improvement in correlation (the correlation of CTL is already very high) and a larger reduction in the
RMS error.

The 1993-2000 time-series of the SSH anomalies in these regions, displayed in Fig. 12, show clearly that the
dominant variability is seasonal in the northwest extratropical Atlantic (Fig. 12a) and interannual in the tropical
Pacific (Fig. 12b). Compared to T/P (thin solid curve), the seasonal variations in the northwest extratropical
Atlantic are reproduced in the assimilation experiments but with smaller amplitude, especially in B1R2 (thick
solid curve) during 1996-1998. The observed seasonal variability is better reproduced in B2R2 (dashed curve).
Experiment B1R2 also displays a pronounced decreasing trend after 1999, which is weaker in B2R2 and not
present in T/P. In NINO3.4, the interannual variations of CTL are slightly damped relative to those in T/P,
especially during the 1997 El Niño event where the assimilation experiments, especially B1R2, reproduce the
large amplitude of the observed SSH anomalies much better.

NW.EXTROP.ATL NINO3.4
Experiment name Correlation RMS error (m) Correlation RMS error (m)

CTL 0.97 0.012 0.98 0.022
B1R1 0.62 0.040 0.99 0.012
B1R2 0.73 0.033 0.99 0.012
B2R2 0.87 0.023 0.99 0.013

Table 2: Correlation coefficient and RMS error (in metres) in the northwest extratropical Atlantic (75◦W-40◦W, 30◦N-
60◦N) and NINO3.4 region of the tropical Pacific (170◦W-120◦W, 5◦S-5◦N) between SSH anomalies from T/P data and
those from the model in the various experiments.

At the equator in the Pacific, the quality of the velocity field can be assessed by comparing it to current meter
data from the TAO array. Figure 13 shows vertical profiles of the correlation coefficients and RMS errors
between zonal current data from TAO at three locations (165◦E, 140◦W and 110◦W) and the corresponding
zonal velocity field from CTL (dotted curves), B1R2 (solid curves) and B2R2 (dashed curves). The assimilation
of temperature and salinity profiles improves the intensity of the equatorial surface currents and equatorial
undercurrent in the central Pacific, as indicated by the reduced RMS errors in B1R2 and B2R2 compared to
those of CTL in the upper 100 m at 140◦W (Fig. 13e). The upper ocean currents in B2R2 are also improved
relative to CTL in the eastern Pacific (Figs. 13c and f) but slightly degraded in the western Pacific (Figs. 13a and
d). The zonal currents in B1R2 are degraded in the upper 150 m of the western Pacific (Figs. 13a and d), and
show no clear improvement over CTL in the eastern Pacific (Figs. 13c and f). Experiment B2R2 outperforms
B1R2 at nearly all depths at all three locations.

6 Summary and conclusions

A 3D-Var system for global ocean analysis has been described in this paper. The global 3D-Var system is
based on an earlier 3D-Var system for the tropical Pacific (Weaver et al. 2003; Vialard et al. 2003) but includes
many new features such as a fully multivariate background-error covariance model (Weaver et al. 2005), the
use of a state-of-the-art quality-controlled in situ data-set (Ingleby and Huddleston 2007), revised background-
and observation-error variance formulations, and the capacity to generate ensembles of ocean analyses. On a
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Figure 12: 1993-2000 time-series of SSH anomalies in the northwest extratropical Atlantic (upper panel) and NINO3.4
region of the tropical Pacific (lower panel) from CTL (dotted curve), B1R2 (thick solid curve), B2R2 (dashed curve), and
T/P (thin solid curve).
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Figure 13: Correlation (upper panels) and RMS error (m s−1; lower panels) between equatorial zonal currents from TAO
data and those from CTL (dotted curves), B1R2 (solid curves) and B2R2 (dashed curves) over the 1993-2000 period at
165oE (left panels), 140oW (middle panels) and 110oW (right panels).
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given assimilation cycle, the ensemble of analyses are created by adding perturbations to the surface forcing
fields (wind-stress, fresh-water flux, and SST - a proxy for heat flux) and observations (temperature and salinity
profiles) used in the assimilation process. These perturbations are based on estimates of the actual uncertainty
in these input fields. The ocean initial conditions on each cycle are also perturbed, but this is done implicitly
as a result of the parallel cycling of the 3D-Var system with different perturbed forcing and observations for
each ensemble member. The purpose of the analysis ensemble is to sample uncertainty in the ocean model
state. Applications of the analysis ensemble include initialization of coupled ocean-atmosphere models for
probabilistic climate forecasting, uncertainty estimation for historical ocean reanalysis, and the estimation of
flow-dependent background-error covariances.

The main purpose of this paper was to explore the use of the ensemble 3D-Var for providing flow-dependent
estimates of the background-error standard deviations (σ b). A 9-member ensemble was constructed and tested
in a cycled 3D-Var framework over the period 1993-2000. On each 10-day cycle, the σ b of all members were
updated based on the ensemble spread of background states. To reduce sampling error, a 9-cycle (90-day)
sliding window was used to include additional ensemble members from the recent past in the σ b computation.
The larger sample size (81 in total) was achieved at the expense of filtering out intraseasonal variations in
background error. This constraint could be relaxed in the future by increasing the number of ensemble members
and/or by employing alternative filtering techniques for reduced sampling noise, such as those described in
recent articles by Buehner and Charron (2007) and Berre et al. (2007).

A control experiment, in which no data were assimilated, produced large differences in the mean state and vari-
ability of the temperature and salinity fields when compared to the profile observations that were assimilated
in the 3D-Var experiment. These differences were substantially reduced in the ensemble 3D-Var experiment.
Evaluation of fields not directly constrained by the assimilated observations gave mixed results. Results showed
that, in general, the ensemble 3D-Var experiment improved equatorial currents in the central and eastern Pacific
and the representation of interannual variability of SSH. However, there were other regions where the assimila-
tion degraded the results (equatorial currents in the western Pacific, SSH anomalies in the northwest Atlantic),
possibly because of problems related to large systematic model error in these regions. Comparisons with a
separate 3D-Var experiment that employed a simpler, empirically-based flow-dependent σ b parameterization
showed that, on the global average, both led to similar reductions in the profile innovations (the mean and stan-
dard deviation) below 150 m but the parameterized σ b gave slightly smaller innovations above 150 m. Fields
not directly constrained by the assimilated observations, however, were clearly better (closer to independent
observations) with the ensemble σ b than with the parameterized σ b. Moreover, the rate of loss of information
between assimilation cycles, as measured by the relative difference between the innovation vector and the anal-
ysis residual, was much reduced using the ensemble σ b suggesting that the ensemble σ b produced analyses
that were in better balance than those generated using the parameterized σ b. This result could have important
implications on the degree to which the assimilated information is retained by the model during the forecast
step, but further investigation of this issue is needed; e.g., by computing statistics of the observation-minus-
background differences on time periods that go beyond the 10-day forecast cycling period, or by testing the
impact on seasonal forecasts using coupled models.

Diagnostics designed to check the consistency of the prescribed covariances with those estimated a posteriori
from assimilation statistics indicated that the σ b above 150 m were underestimated by the ensemble. Simple
procedures to inflate the ensemble-generated σ b in the upper ocean were tested (results not presented in this
study) but did not give satisfactory results. The apparent underestimation of the ensemble spread is likely due
to several factors including the small size of the ensemble and deficiences in the perturbation strategy. The SST
relaxation term, for example, has the tendency to produce excessive damping of temperature perturbations near
the surface. The direct assimilation of SST data (via the cost function), which will be implemented in future
versions of our assimilation system, should alleviate this problem. The absence of model-error perturbations is
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also a weakness, particularly for the relatively low-resolution model used in this study which can be expected
to have a significant model-error component associated with the unresolved mesoscale. Techniques to include
model-error perturbations, such as those described by Hamill and Whitaker (2005), could be explored in future
work. Despite these apparent shortcomings, results from this study are encouraging and suggest that useful
information about background error can be extracted from a suboptimal ensemble.

This study has focused on using the ensemble to estimate the background-error standard deviations, but other
parameters of the background-error covariance model could be estimated as well. Pannekoucke et al. (2008)
present a practical method for estimating geographically dependent correlation length scales from ensemble
differences. In our quasi-Gaussian correlation model based on a generalized diffusion operator, these length
scales are related to the elements of the diffusion tensor (Pannekoucke and Massart 2008). Preliminary results
from applying the Pannekoucke et al. method to estimate the tensor elements from time-averaged ensembles
generated by our system are encouraging although further work is needed to evaluate the impact of the new
length scale estimates in a cycled assimilation experiment.

The ensemble procedure has been tested in a 3D-Var framework in this study but is applicable to 4D-Var as
well. Practical 4D-Var applications, however, would likely require approximations in the ensemble-generation
strategy due to the substantial extra cost of 4D-Var. In general, the extra computational expense of producing
ensembles of analyses may be justified if these analyses can be used simultaneously for probabilistic forecasting
as well as background-error covariance estimation.
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A Observation-error covariance estimation using the Fu et al. method

Following Janjı́c and Cohn (2006), we define the true state vector xt(ti) at time ti to be the component Π(x) xt
C(ti)

of the true continuum state xt
C(ti) where Π(x) is a projection operator from the continuum onto the finite-

dimensional subspace resolved by the numerical model. The resolved component is the quantity that we wish
to estimate through data assimilation. The observation vector yo

i can be related to xt(ti) through an equation of
the form (Janjı́c and Cohn 2006)

yo
i = Hixt(ti)+ εm

i + εr
i + ε i

i (24)

where Hi is the discrete observation operator which is taken to be linear as in the assimilation system described
in section 3. The discrepancy between yo

i and Hixt(ti) can be attributed to errors in the measurement pro-
cess, εm

i , representativeness errors associated with the unresolved scales, ε r
i = Hi

[
xt

C(ti)−xt(ti)
]
, where Hi

is the continuum observation operator, and interpolation errors associated with approximating the continuum
observation operator by Hi, ε i

i =(Hi −Hi)xt(ti). The sum of these errors is the total observation error,

εo
i = εm

i + εr
i + ε i

i. (25)
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The method of Fu et al. (1993) is designed to estimate the static component of the observation-error covari-
ance matrix by comparing time-averaged statistics of the observation vector with those of its model equivalent
Hixc(ti) where xc(ti) is the state vector computed from a model integration without data assimilation (the con-
trol run in this study). At any time ti, the unconstrained model state can be related to the true state through

xc(ti) = xt(ti)+ εc(ti) (26)

where εc(ti) represents the unconstrained model-state error. For notational convenience, the time parameter
will be dropped in the rest of this appendix. Using (24)-(26), the auto- and cross-covariances of yo and Hxc can
be computed as follows:

E
[
ỹo(ỹo)T ] = HE

[
x̃t(x̃t)T ]HT + E

[
εo(εo)T ] + HE

[
x̃t(εo)T ] + E

[
εo(x̃t)T ]HT , (27)

E
[
Hx̃c(Hx̃c)T ] = HE

[
x̃t(x̃t)T ]HT + HE

[
εc(εc)T ]HT + HE

[
x̃t(εc)T ]HT + HE

[
εc(x̃t)T ]HT , (28)

E
[
ỹo(Hx̃c)T ] = HE

[
x̃t(x̃t)T ]HT + HE

[
x̃t(εc)T ]HT + E

[
εo(εc)T ]HT + E

[
εo(x̃t )T ]HT (29)

where E[ ] denotes the expectation operator and z̃ = z−E[z ]. The errors are assumed to be unbiased: E[ε o] =
E[εc] = 0. The unknown auto-covariance of the true state, E[x̃t(x̃t)T ], can be eliminated by subtracting (29)
from (27) and (28) to yield

E
[
ỹo(ỹo −Hx̃c)T ] = E

[
εo(εo)T ] + Z1, (30)

E
[
Hx̃c(ỹo −Hx̃c)T ] = −HE

[
εc(εc)T ]HT + Z2, (31)

where

Z1 = HE
[
x̃t(εo)T ] − E

[
εo(εc)T ]HT − HE

[
x̃t(εc)T ]HT , (32)

Z2 = E
[
εo(x̃t)T ]HT + E

[
εo(εc)T ]HT − HE

[
εc(x̃t )T ]HT . (33)

The left-hand sides of (30) and (31) are quantities that can be estimated, under the ergodic assumption, from
time- and spatially-averaged observations and their unconstrained model counterpart. The unknown quantity
of interest here is the observation-error covariance matrix, R̂ ≡ E[εo(εo)T ], in (30).

Following Fu et al. (1993), an approximate equation for R̂ is obtained by assuming that Z1 ≈ 0 or at least that
this term is small (in a matrix-norm sense) compared to R̂. The validity of this assumption can be appreciated
by examining each term in (32). The first term can be neglected by assuming that the true state (the resolved
scales) and observation error are approximately uncorrelated, E[x̃t(εo)T ] ≈ 0. This is a safe assumption for
the measurement component of the observation error which has no reason to be correlated with the true state.
It also implies that the resolved and unresolved scales are entirely decoupled, which is more restrictive. The
second term can be neglected by assuming that the observation error and unconstrained model-state error are
approximately uncorrelated, E[εo(εc)T ] ≈ 0. From (26), this is ensured if E[εo(x̃t)T ] ≈ 0, as already discussed
above, and if E[εo(x̃c)T ] ≈ 0, which is a reasonable assumption since the model (control) integration is not
constrained by the observations. It is more difficult, however, to justify ignoring the third term (E[ x̃t(εc)T ]≈ 0),
as already pointed out by Menemenlis and Chechelnitsky (2000) who provide evidence in their analysis of
TOPEX/POSEIDON altimeter data that suggests that this term is not negligible. This third assumption is made
purely for practical convenience and should be treated with caution. Equation (30) (with Z1 = 0) has been used
in this study to estimate the variances of observation error (see (11)) although in principle it could be used to
estimate the correlations as well.

The assumptions described above also imply that Z2 ≈ 0 in (31), thereby yielding an approximate expression
for HB(xc)HT where B(xc) ≡ E[εc(εc)T ]. Equation (31) may provide useful information for initializing the
background-error covariance matrix on the first assimilation cycle, where the background state is obtained from
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an unconstrained model (spin-up) integration, but is of questionable relevance for defining background-error
covariances in the presence of data assimilation. This expression has not been exploited in this study where
instead the ensemble method has been used to enrich a quasi-static covariance model with flow-dependent
estimates of the variances.

B Background-error covariance estimation using an ensemble method

The purpose of this appendix is to illustrate how differences between members of a suitably generated 3D-Var
ensemble can be used to estimate the covariances of background error. First, expressions for the first-order
evolution of the true background- and analysis-state errors will be derived. These expressions will then be
related to the first-order evolution of background- and analysis-state perturbations in the ensemble system. The
presentation is similar to that of Berre et al. (2006) but extended here to a nonlinear framework and tailored to
account for particular features of our ensemble 3D-Var system.

B.1 First-order evolution of the true background- and analysis-state errors

As discussed in section 3 and illustrated in Fig. 1, the background state on a given 3D-Var cycle corresponds
to the IAU-corrected state at the end of the previous cycle (xb

c(t0) = xa
c−1(tN)). For notational convenience, the

index c will be ignored except when clarification is necessary.

The background state evolves from ti−1 and ti according to (2) where xb(t0) = xb
c(t0) = xa

c−1(tN). Using the
notation established in appendix A, the evolution of the true continuum state xt

C(ti) can be described by the
equation

xt
C(ti) = M (ti, ti−1)

[
xt

C(ti−1), ft
C,i
]

(34)

where M(ti, ti−1) is the true continuum model operator from ti−1 to ti, and f t
C,i is the true continuum surface

forcing vector acting from ti−1 to ti. The evolution equation of the true resolved state xt(ti) ≡ Π(x) xt
C(ti) can be

represented in terms of the discrete model operator M(ti, ti−1) and the true resolved forcing vector f t
i ≡ Π(f) ft

C,i,
where Π(f) is a projection operator from the atmospheric continuum onto the finite-dimensional subspace of the
model forcing field, as

xt(ti) = M(ti, ti−1)
[
xt(ti−1), ft

i
]
− εq

i (35)

where εq
i is the model error. Following Cohn (1997) and Janjı́c and Cohn (2006), ε q

i can be neatly expressed as
the sum εq

i = εqd
i + εqu

i where

εqd
i =

(
M(ti, ti−1)−Π(x)M(ti, ti−1)

)[
xt(ti−1), ft

i
]

(36)

is the model error due to discretizaton, and

εqu
i = −Π(x)M(ti, ti−1)

[
xt

C(ti−1)−xt(ti−1), ft
C,i − ft

i
]

(37)

is the model error due to the unresolved scales. Notice that our definition of model error through (36) and (37)
does not include the contribution from the surface forcing field error

ε f
i = fi − ft

i (38)
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which is treated separately in what follows. The forcing errors include errors inherent in the (re)analysis
procedure used to produce the atmospheric fluxes as well as errors associated with the interpolation procedure
used to map the fluxes onto the model grid and time step.

An equation for the time evolution of the background error,

εb(ti) = xb(ti)−xt(ti) (39)

can be derived by subtracting (35) from (2) to yield

xb(ti)−xt(ti) = M(ti, ti−1)
[
xb(ti−1), fi

]
−M(ti, ti−1)

[
xt(ti−1), ft

i
]
+ εq

i . (40)

Expanding the second term on the right-hand side of (40) about xb(ti−1) and fi, and using (38) and (39), yields,
to first order,

εb(ti) ≈ Mxb(ti, ti−1)εb(ti−1) + ε p
i

≈ Mxb(ti, t0)εb(t0) +
i

∑
j=1

Mxb(ti, t j)ε p
j (41)

where

ε p
i = Mf(ti, ti−1)ε f

i + εq
i (42)

is the total model error at time ti. Here, Mxb(ti, ti−1)≡ ∂M/∂x|x=xb(ti−1), Mxb(ti, t j)≡Mxb(ti, ti−1) · · ·Mxb(t j+1, t j),
with Mxb(ti, ti) ≡ I, and Mf(ti, ti−1) ≡ ∂M/∂ f|f=fi .

The assimilation method transforms the innovation vector, d = (...,dT
i , ...)T , into an analysis increment. By

minimizing the 3D-Var FGAT cost function exactly, the analysis increment can be expressed as

δxa = Kd (43)

where

K = BHT(HBHT +R
)−1 (44)

is the so-called Kalman gain matrix, B and R being the prescribed background and observation error covariance
matrices detailed in section 3. The innovation vector can be expressed in terms of the background error (Eq. 39)
and observation error (Eqs. (24) and (25)) by noting that

di = yo
i −Hixb(ti) = yo

i −Hixt(ti)+Hixt(ti)−Hixb(ti) = εo
i −Hiεb(ti). (45)

The analysis increment is applied to the model using IAU as described by (10). The first-order evolution of the
analysis error,

εa(ti) = xa(ti)−xt(ti), (46)

is obtained by subtracting (35) from (10) to yield

xa(ti)−xt(ti) = M(ti, ti−1)[xa(ti−1), fi] + Fiδxa − M(ti, ti−1)
[
xt(ti−1), ft

i
]
+ εq

i . (47)

Expanding the third term on the right-hand side of (47) about xa(ti−1) and fi and using (42) gives, to first order,

εa(ti) ≈ Mxa(ti, ti−1)εa(ti−1) + Fi δxa + ε p
i

≈ Mxa(ti, t0)εb(t0) +
i

∑
j=1

Mxa(ti, t j)
[

Fj δxa + ε p
j

]
, (48)

where εb(t0) = εb
c(t0) = εa

c−1(tN). Equation (48) is similar to (41) for the background error but employs a
different linearization state (xa(ti) instead of xb(ti)) and includes the analysis increment as an extra component
in the model error term.
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B.2 Ensemble representation of background- and analysis-state errors

Let the index l denote a particular ensemble member on a given cycle, and let ε̃b
l (t0), ε̃ f

l,i, ε̃q
l,i and ε̃o

l,i define a
set of perturbations to the system input parameters such that

xb
l (t0) = xb(t0)+ ε̃b

l (t0), ε̃b
l (t0) ∼ N(0, P̃b(t0)), (49)

fl,i = fi + ε̃ f
l,i, ε̃ f

l,i ∼ N(0, F̃i), (50)

ql,i = ε̃q
l,i, ε̃q

l,i ∼ N(0,Q̃i), (51)

yo
l,i = yo

i + ε̃o
l,i, ε̃o

l,i ∼ N(0, R̃i), (52)

where ε̃ ∼N(0,A) means normally distributed with E[ε̃ ] = 0 and E[ε̃ ε̃T ] = A. From (2) and (10), the equations
describing the time-evolution of the perturbed background state xb

l (ti) and perturbed analysis state xa
l (ti) can be

written as

xb
l (ti) = M(ti, ti−1)

[
xb

l (ti−1), fl,i
]

+ ql,i, (53)

xa
l (ti) = M(ti, ti−1) [xa

l (ti−1), fl,i] + Fi δxa
l + ql,i (54)

where xa
l (t0) = xb

l (t0), and δxa
l = Kdl , with dl = (...,dT

l,i, ...)
T and dl,i = yo

l,i −Hxb
l (ti), is the analysis increment

produced using the perturbed observations and perturbed background trajectory of ensemble member l.

Subtracting (2) from (53) and (10) from (54), and linearizing terms, gives

ε̃b
l (ti) ≈ Mxb(ti, t0) ε̃b

l (t0) +
i

∑
j=1

Mxb(ti, t j) ε̃ p
l, j , (55)

ε̃a
l (ti) ≈ Mxa(ti, t0) ε̃b

l (t0)+
i

∑
j=1

Mxa(ti, t j)
[

Fj δ x̃a
l + ε̃ p

l, j

]
(56)

where ε̃ p
l,i = Mf(ti, ti−1) ε̃ f

l,i + ε̃q
l,i, δ x̃a

l = Kd̃l , d̃l = (..., d̃T
l,i, ...)

T and d̃l,i = ε̃o
l,i −Hε̃b

l (ti). Comparing (55)
and (56) with (41) and (48) shows that the ensemble perturbations, ε̃b

l (ti) and ε̃a
l (ti), and the true errors εb(ti)

and εa(ti), obey identical first-order evolution equations. Furthermore, if the covariance matrices of the input
perturbations in (49)–(52) are equal to the covariance matrices of the true errors, P̂b(t0) ≡ E[εb(t0)(εb(t0))T ],
F̂i ≡ E[ε f

i (ε f
i )T ], Q̂i ≡ E[εq

i (ε
q
i )

T ] and R̂i ≡ E[εo
i (εo

i )
T ], then it follows from (55) and (56) that the evolving

covariance matrices P̃b(ti) = E[ε̃b
l (ti)(ε̃b

l (ti))T ] and P̃a(ti) = E[ε̃a
l (ti)(ε̃a

l (ti))T ] will be identical, to first order,
to those of the true errors P̂b(ti) ≡ E[εb(ti)(εb(ti))T ] and P̂a(ti) ≡ E[εa(ti)(εa(ti))T ].

Of particular interest here is the covariance matrix P̃a(tN) = E[ε̃a
l (tN)(ε̃a

l (tN))T ] of the analysis-state error ε̃a(tN)
at the end of the cycle since this matrix should be used to define the background-error covariance matrix for the
next cycle (see Fig. 3): P̃a(tN) = P̃a

c(tN) = P̃b
c+1(t0). This matrix can be estimated from a sample of L perturbed

analysis states as

P̃a(tN) ≈ 1
L−1

L

∑
l=1

(xa
l (tN)−xa(tN))(xa

l (tN)−xa(tN))T (57)

where each xa
l (tN) is generated by perturbing the system input parameters as in (49)–(52). Rather than using

(57), Fisher (2003), Žagar et al. (2005) and Berre et al. (2006) suggest estimating P̃a(tN) from differences
between ensemble members. Assuming that the errors of the different members are mutually uncorrelated then

P̃a(tN) =
1
2E[(ε̃a

l (tN)− ε̃a
l+1(tN))(ε̃a

l (tN)− ε̃a
l+1(tN))T ]

≈ 1
2(L−1)

L

∑
l=0

(
xa

l (tN)−xa
l+1(tN)

)(
xa

l (tN)−xa
l+1(tN)

)T (58)
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where xa
L+1(tN) = xa

0(tN) = xa(tN). The multiplicative factor 1/2 arises since ensemble members are effectively
used twice in (58). For historical reasons, (58) rather than (57) has been used in this study.
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