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1 Basic concepts

1.1 The analysis

In meteorology and other branches of geophysics the process of approximating the
true state of a physical system at a given time is called analysis. The information on
which the analysis is based includes observational data and a model of the physical
system, together with some background information on initial and boundary condi-
tions and possibly additional constraints on the analysis. The analysis is useful in
itself as a description of the physical system, but it can also be used for example as
an initial state for studying the further time evolution of the system.

• Example: Classical analysis methods. Meteorologists were producing meteoro-
logical analyses by hand long before the advent of the computer (and some do it
still today). The observations were all made roughly simultaneously (12UTC
surface pressure reports from ships for example), and bore on the physical
model variables like temperature, wind and pressure. These hand analyses ac-
tually contained far more than just a spatial interpolation of observations, and
[6] and others formalized this approach for use in the early numerical weather
prediction models. The approach is the following. First-guess fields defined
at the gridpoints of the forecasting model are interpolated to the observation
location. The difference between the observation and the interpolated value
are then interpolated back onto the gridpoints to define a correction (which
decreases with the distance from the observation). The important step here
is to use a first-guess to guide the eye (or the computer) when interpreting
observational information. These early works lead to optimal interpolation
which in different guises still are widely used analysis methods (see [8] for a
comprehensive discussion of classical analysis methods).

• Example: Ozone analysis. Total ozone is measured by remote sensing from
space, and one days worth of data covers the Earth with some gaps. An
analysis will fill in all gaps and produce a global map of total ozone. We can
make a rather poor analysis by interpolating the observations in space, not
least because the observations are up to 24 hours apart and the total ozone
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field may have changed significantly at some locations in that time. A better
analysis would take the dynamic evolution of ozone and the distribution of
observations in time into account, and in that way produce a picture of total
ozone which is consistent with the dynamic state of the whole atmosphere.

• Example: Weather forecasts. The analysis prepares the initial conditions for
weather forecasts. In addition to the newly arrived observations, a background
estimate of the state of the atmosphere is available as a forecast from the
previous analysis. In the preparation of the analysis, a particular effort is
usually made to damp gravity waves in the analysis by additional constraints.

A particular challenge in the forecasts of the time-evolution of geophysical systems is
the nonlinearity of the system and the corresponding sensitivity to initial conditions.
It is well known that even if we had a perfect forecast model, all forecasts start to
diverge from the truth after a finite time. This is illustrated in Fig. 1 which shows
how integrations of a nonlinear equation starting from slightly different initial states
follow each other for some time and then start to diverge from each other. If we
take one of the integrations to be the truth and interpret the difference in initial
conditions as the analysis error, we can see that increasing the analysis error reduces
the time period for which the forecast remains close to the truth.
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Figure 1: Integrations of Duffing’s equation, ẍ + 0.05ẋ + x3 = 7.5 cos t, from slightly
different initial conditions. We take x(0) = 3 and ẋ(0) = 4 to be the true initial
state and interpret differences in initial conditions as ‘analysis errors’. In the left
figure, with ‘analysis errors’ of ca. 0.3%, the ‘forecast’ is good until t ≈ 35, whereas
in the right figure with ‘analysis errors’ of ca. 0.6% the forecast starts to diverge
already at t ≈ 20. See [20] for this and other interesting nonlinear systems.

1.2 The assimilation

As discussed above, an analysis can be very simple, for example a spatial interpo-
lation of observations. However, much better results can be obtained by including
the dynamic evolution of the physical system in the analysis. An analysis which
combines time distributed observations and a dynamic model is called assimilation
or data assimilation.
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The assimilation problem can be discussed from many angles, depending on
background and preferences (control theory, estimation theory, probability theory,
variational analysis, etc.). A few excellent introductions to data assimilation from
different points of view are given by [1, 2, 5, 13, 15, 16, 17, 18, 19]. A discrete formu-
lation is the most common basis for developing the algorithms in numerical models.
However, in this introduction I want to show how different assimilation algorithms
can be derived from one common source, and what the approximations are which
lead to each algorithm (OI, 3DVAR, 4DVAR and Kalman filters in particular). One
attractive way to achieve this is to consider the continuous assimilation problem
from the point of view of variational analysis. Following [1] and [2] a generalized
inverse solution to the assimilation problem will be derived, which has many of the
common assimilation algorithms as special cases. See [14] for an introduction to
variational analysis.

It is illustrative to see how the assimilation problem differs from the familiar
initial value problem. The assimilation problem can be seen as an initial value
problem with some added features: the model equations for the model state ~x are
approximate with model errors ~εm; the initial condition is approximate with error
~εb (background error); and there are observations yn present with observation errors
εo,n. Expressed in mathematical form,

∂~x

∂t
+ ~M(~x) = ~εm (1)

~x(0) = ~xb(0) + ~εb (2)

yn = Hn(~x) + εo,n n = 1, . . . , N (3)

In Eq. 3 we have introduced the observation operator Hn, which calculates the
model equivalent of the observation yn. Even if yn measures an explicit model
state variable (say temperature), the observation operator will still be needed to
interpolate the model state, which always has finite resolution, to the position of
the observation. When the measurement is indirect, like radiances measured by
satellites from space, the observation operator can be a radiative transfer model
which takes a whole model column and calculates the radiance emitted to space from
Earth in the particular waveband measured. Observation operators are central to
data assimilation, and much of the work in developing data assimilation algorithms
is related to the observation operators.

Frequently ~M(~x) is used to denote the total model operator, but here we keep
the time derivative of the model state separate to better distinguish the dynamic
evolution within the assimilation.

Most of the discussion could also have been made in terms of the discrete state
vector x, and it is good to keep this in mind and try to figure out discrete equivalents
of some of the material we will go through.

1.3 Formulation in terms of probability

1.3.1 Probability density functions

The assimilation problem outlined above includes unknown errors, so it is obvious
that the solution we aim at is statistical. Before we can go any further, we need to
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know something about the statistics of the errors. Characterizing the errors of the
particular model and observations of the system under study is another one of the
cornerstones of data assimilation. In the best of worlds, we have a full description
of the probability density function P (~εm, ~εb, ~εo, t) and include the equation for the
time-evolution of P in the formulation of our assimilation system,

∂P (~ε, t)

∂t
+

∂

∂~ε

(

∂~ε

∂t
P (~ε, t)

)

= 0 (4)

This is the Liouville equation, which in this case says that the total probability of
all errors integrated over the phase space is conserved (= 1 by definition). Note how
similar this is to a continuity equation, with the ‘error’ transporting ‘probability’.
In practical applications, we have a very limited knowledge of P , for example only
the mean and covariances.

We can in most cases assume model, background, and observation errors to be
independent. In that case the total probability density function (pdf) is a product
of the component pdf’s for the observations, Po(~εo, t), the background, Pb(~εb, t), and
the model, Pm(~εm, t),

P = PmPbPo = exp(log Pm + log Pb + log Po) (5)

It may seem obvious that the optimal analysis corresponds to the maximum of the
pdf, that is, the maximum value of the exponent in Eq. 5. However, this is not
always the case as the following example shows.

• Example: Non-Gaussian P . Let us consider a ‘one-dimensional’ pdf, say the
conditional probability P (x|y), that is the probability of finding the system
at x given the observation y. A Gaussian and a non-Gaussian pdf are shown
in Fig. 2. In the Gaussian case, the maximum likelihood point and the mean
of x coincide, so choosing the maximum of the pdf as our analysis seems the
best solution. In the particular non-Gaussian case shown here, the mean and
the maximum likelihood estimate are different, and it is not obvious what the
best analysis is. The lesson is that we need to study the actual pdf enough
to be sure that a maximum likelihood solution really gives us the analysis we
want.

1.3.2 The costfunction

The maximizing of the probability is often expressed in terms of minimizing the
negative of the exponent of the pdf, which is called the costfunction J ,

min J = min(− log Pm − log Pb − log Po) = min(Jm + Jb + Jo) (6)

where we have introduced the model, background and observation costfunctions.
In passing we note that when additional constraints are added to the assimilation,
these also appear as additional terms in the costfunction, for example Jc is frequently
used to denote the costfunction for gravity wave constraints (‘reduction of small scale
noise in the meteorological fields’).
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Figure 2: Representativeness of maximum likelihood solutions for a Gaussian and
a non-Gaussian pdf P (x|y), that is the conditional probability of finding the model
state at x, given an observation y. In the non-Gaussian case, the maximum likelihood
point may be a poor representative of the best solution.

• Example: Quadratic costfunction. A costfunction which appears frequently in
meteorological and oceanographic applications is the following. Assume that
the model errors can be neglected, and that the observation and background
errors can be modelled by a Gaussian (also called normal) unbiased distribu-

tion. Using the definitions ~εb = ~x−~xb and ~εo = ~y− ~H(~x) from the formulation
of the assimilation problem, Eqs. 1– 3, we get

Pb =
1

√

2π| ~B|
e−

1

2
(~x(0)−~xb(0))

T ~B−1(~x(0)−~xb(0)) (7)

Po =
1

√

2π|~R|
e−

1

2
(~y− ~H(~x))T ~R−1(~y− ~H(~x)) (8)

where ~B and ~R are matrices of background and observation covariance func-
tions, which reduce to the covariance matrices B and R in the discrete formu-
lation, and (·)T is the transpose of (·). The costfunction is then

J =
1

2
(~x(0)−~xb(0))T ~B−1(~x(0)−~xb(0))+

1

2
(~y− ~H(~x))T ~R−1(~y− ~H(~x))+C (9)

We do not need to consider the constant C further, since it has no effect
on finding the minimum of the costfunction. There are some very nice conse-
quences of having a Gaussian pdf. First, we only need to know the covariances
of the errors instead of the whole pdf to completely characterize the errors (if
the errors are biased, we also need the mean of the errors, which we can sub-
tract before doing the analysis). Second, if the observation operators and the
model are linear, the costfunction is quadratic in ~x, and there is only one
minimum, which simplifies the analysis. We will show how we can deal with
nonlinearities in the next example. Third, there are very effective methods for
minimizing quadratic problems. This is very important, since the main fea-
ture of meteorological and oceanographic assimilation problems is their large
dimension (≈ 107).
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• Example: Nonlinear costfunctions. In real applications we always have nonlin-
ear model and very often the observation operators Hn are nonlinear. In the
example above, Eq. 9, a nonlinear ~H(~x) will make the costfunction nonlinear
in ~x. The nonlinearity of the model can also contribute to the nonlinearity
of J in the following way. The observations used in the analysis are collected
over a short time window (the assimilation window), usually 6–12 hours long.
Instead of minimizing J with respect to ~x in the whole assimilation window,
we only minimize it with respect to ~x(0), which greatly reduces the dimension
of the problem. Since the model is perfect in this example, a forward model
integration from ~x(0) gives ~x(t), and in this way the nonlinearity of the model

enters ~H(~x) when the observations are compared with the model at appropri-
ate time (as in 4DVAR). Figure 3 shows the approach which we can follow
in this case. First, linearize the costfunction around the background state ~xb

and minimize the quadratic costfunction Ji to get an estimate ~xi. Repeat
the procedure by linearizing around ~xi, until the procedure has converged to
required accuracy. This approach is widely used in assimilation applications.
We see that in general there is no guarantee that we find the minimum of the
costfunction. First of all, we need an accurate background estimate in order
to end up in the right valley of the costfunction. Otherwise we may end up in
a local minimum which is far away from the optimum solution. Second, the
accuracy required of the background estimate really depends on the nonlinear-
ity of the costfunction. In meteorological and oceanographic applications the
costfunction is not more nonlinear than that forecasts from previous analysis
are in most cases a good enough background to reach a good analysis (not
always though, there is the odd bad forecast).

Nonlinear J

x
x

∞
x

i

Ji

J

x
b

Figure 3: Iterative solution for a nonlinear costfunction. In each iteration the cost-
function is linearized around a previous estimate ~xi, which gives a quadratic cost-
function Ji. The convergence depends on the accuracy of the first estimate of ~x (the
background ~xb) and the nonlinearity of J .
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1.3.3 Illustrations with some special cases

We can now use the knowledge about the statistical distribution of the errors to
solve the assimilation problem. The relative magnitude of different errors tells us
which aspects of the information provided to the assimilation algorithm to give
most weight. For example, if the background errors are larger than the observation
errors, then the analysis will most probably be closer to the observations than the
background. In Figs. 4– 8 we will illustrate the effect of a single observation yn,
with observation operator Hn, on the analysis ~xa in different cases which can arise
in applications. The figures are adapted from [17].

Here x
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a

Case 1: Useless (or no) model
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y
n

x
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= x

b

Figure 4: Useless (or no) model. There is no background information available, and
the analysis is at the maximum of P (x|y).

2 Variational data assimilation

In this section we will show how the assimilation problem, Eqs. 1– 3, can be solved
for the special case of Gaussian probability density functions. Gaussian error dis-
tributions take a special place in applications because of their abundance in nature.
From studying the error characteristics of background and observation errors arising
in meteorological applications for example, we know that the Gaussian distribution
is very often a good approximation. We have also mentioned that nonlinear assimi-
lation problems with Gaussian error distributions can be formulated as an iteration
of linear problems minimizing a quadratic costfunctions, for which very efficient nu-
merical algorithms exist. Even non-Gaussian error distributions can in most cases be
transformed to Gaussian error distributions by a suitable change of variable (see [18]
for interesting examples). For these reasons most assimilation algorithms developed
for atmospheric and oceanographic applications take the assumption of Gaussian
errors as their starting point, and we will devote the rest of these notes to this case.

Below we will apply variational analysis to the nonlinear assimilation problem,
and arrive at a full nonlinear solution which includes the Euler-Lagrange equation
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M(x) = O

Case 2: Perfect model (Q=O) 
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Figure 5: Perfect model. In this case the model error is zero, and the analysis
is constrained to lie along the model trajectory. We see that because of this the
maximum probability has moved to a state consistent with the model.

Accurate background

      Large analysis residuals yn – Hn(xa)
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Case 2: Perfect model (Q=O) 
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Accurate observations

      Small yn – Hn(xa)

M(x) = O
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Figure 6: The relative accuracy of background and observations. If the background
is more accurate than the observation (left), then the analysis will be closer to the
background, giving large analysis residuals yn − H(~xa). Conversely, if the observa-
tions are more accurate (right), the analysis will be closer to the observation, giving
small analysis residuals.

for the assimilation problem (see [1], which uses the term generalized inverse for the
solution). From this theoretical solution, we will see how different assumptions and
simplifications can be made to arrive at some common data assimilation algorithms.
It is worth pointing out that different theoretical approaches to the assimilation
problem often end up with similar assimilation algorithms once all the assumptions
necessary to achieve fast and accurate algorithms have been made (see for example
[16, 7]).
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Model error PDF

Case 3: Imperfect model (Q≠O) 
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Figure 7: Imperfect model. Now the analysis does no longer have to lie exactly on the
model trajectory, but can deviate from the model. How much depends on the relative
size of the model error. The model error pdf shown has a maximum at the model
trajectory (the same as in previous examples), and isolines of smaller probability run
parallel to the trajectory.

Case 4: Perfect model (Q=O), but nonlinear 
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Figure 8: Nonlinear model. With nonlinear models, the extremes of the pdf are
not unique, and convergence of iterative methods is not guaranteed. We need to
linearize and solve nonlinear assimilation problems as a series of approximate linear
assimilation problems. Alternatively, apply nonlinear methods like the Monte Carlo
method (see for example [12, 11]).

We will start by discussing covariances and biases, then formulate the assim-
ilation problem variationally and derive the solution, followed by discussions and
examples.
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2.1 Error covariances and biases

2.1.1 Covariances

As we have seen, the pdf of an unbiased Gaussian distribution is completely charac-
terized by its covariance function, or its covariance matrix in the discrete case. The
common notations for the covariances we will encounter are:

• ~Q(ξ, t, ξ′, t′) or Q: Model error covariance. In the continuous case ~Q describes
the covariances between errors in the model at any two locations ξ and ξ ′, and
any two time instances t and t′. The model errors can be caused by processes
not described by the model equations, or by an inaccurate estimate of some
model parameters. If there are M model variables, then ~Q is a matrix with
dimension M ×M , where each element is a covariance function. ~B and ~A have
the same dimension as ~Q.

• ~B(~ξ, ~ξ′) or B: Background error covariance. Most geophysical systems remain
close to some approximate dynamic (or other) balances. This translates into
a correlation between the errors of different model variables. For example, in
large scale atmospheric flow, the geostrophic balance translates into a strong
correlation between wind and temperature errors. These cross correlations be-
tween variables always need to be included in ~B. Otherwise the assimilation
will produce an unbalanced analysis, which is not useful as an initial condi-
tion for forecasts, since the correction added by the analysis will be lost in
transient noise caused by the model adjusting itself to a more balanced state.
In most assimilation algorithms the formulation is much simpler if these cross
correlations can be avoided. One widely used method is to use an analyti-
cal or statistical description of the balance between errors to transform the
model variables into another set of variables which are uncorrelated. This is
an example of a so called control variable, which is a term used to describe
the variables which are actually used in the minimization step of an analysis.
The control variable can even be a completely different set of variables (vortic-
ity and divergence instead of wind) or a different representation can be used
(spectral instead of gridpoint). See [10] for an introduction.

– Example: Uncorrelated control variable. Let ~x = (u, ϕ)T with background
error covariance functions Buu, Bϕϕ and Buϕ. To eliminate the cross-
correlation between errors of different control variables, a transform is
chosen so that

(

u − ub

ϕ − ϕb

)

=

(

δu
δϕ

)

−→

(

δ̃u

δ̃ϕ

)

(10)

(

Buu Buϕ

Bϕu Bϕϕ

)

−1 (

δu
δϕ

)

−→

(

Bũũ 0
0 Bϕ̃ϕ̃

)

−1 (

δ̃u

δ̃ϕ

)

(11)

• R: Observation error covariance. The dimension of the observation error
covariance matrix is N × N . In R are included the effects of measurement
errors, errors in the design of the observation operators and representativeness
errors (this is just saying that a model can not represent all the small scale
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variations of say temperature measured by a thermometer somewhere within
a model gridpoint of say 50 km square).

• ~A(~ξ, ~ξ′) or A: Analysis error covariance. Some measure of ~A(~ξ, ~ξ′) is always
useful to diagnose how much of an improvement the analysis is upon the
background.

– Example: The Hessian J ′′ as a measure of ~A. The probability density
function for the analysis error ~εa is for the case of uncorrelated obser-
vation, background, and model errors discussed above Pa(~εa) = PmPbPo.
The corresponding costfunction Ja = − log Pa has a minimum at the anal-
ysis, so the gradient is zero, J ′

a = −P ′

a/Pa = ~0. The second derivative
(the Hessian) is J ′′

a = −P ′′

a /Pa + P ′

a/P
2
a = −P ′′

a /Pa. For the Gaussian
case we are considering

Pa =
1

√

2π| ~A|
e−

1

2
~εT

a
~A−1~εa (12)

and we get P ′′

a = − ~A−1Pa− ~A−1~εaP
′

a = − ~A−1Pa where we have used that
P ′

a = ~0 for the optimal analysis (the maximum of the pdf). Collecting
together these results, we see that for the Gaussian case, the analysis
error covariance matrix is the inverse of the Hessian of the costfunction,

~A = (J ′′

a )−1 (13)

2.1.2 Biases

Biases are the black sheep of the data assimilation family. Including biases in ad-
dition to covariances in the formulation of an assimilation algorithm is possible in
principle, but in practice it is extremely difficult to determine the bias. We may find
that a given set of observations and a model forecast (the background) are biased
with respect to each other, but is it the observation or the model forecast that is bi-
ased? How to include biases in assimilation algorithms and how to estimate the bias
in different components of an assimilation system is a challenging area of research.

Biases must be dealt with in one way or another for the error characterization
to be acceptable for an assimilation system. The following methodology is often
used. If the bias of an observation is known, subtract it from the observation,
and feed the unbiased estimate of the observation to the analysis. This process
is called bias removal. Much research is usually needed to characterize the bias
for different observation types, giving rise to different bias correction parameters
for each observation type, where the parameters ~β are a function of the measuring
geometry and the model state.

Once the bias correction models with parameters ~β are known, these parameters
can alternatively be estimated by including them in the assimilation ([9]). The bias
parameters are assumed slowly varying (which is different from the biases being
slowly varying!) and are added to the costfunction by modifying the observation

operator from ~H(~x) to ~H(~x) +~b(~x, ~β), where ~b(~x, ~β) is the bias. If the pdf of the
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bias parameters is Gaussian with covariance matrix ~C and previous estimate ~β0 is
given, then the costfunction (without the model error term) is

J =
1

2
(~x(0) − ~xb(0))T ~B−1(~x(0) − ~xb(0)) (14)

+
1

2
(~y −~b(~x, ~β) − ~H(~x))T ~R−1(~y −~b(~x, ~β) − ~H(~x)) (15)

+
1

2
(~β − ~β0)

T ~C−1(~β − ~β0) (16)

But there still remains the fact that the model may be biased. This bias is often
ignored or simply absorbed into the observation bias. Alternatively, the model
bias can also be estimated as part of the assimilation by including its statistical
description in the model error term. This is an area of active research.

In the remainder of these notes we will emphasize assimilation algorithms without
bias, assuming that appropriate bias removal techniques are used, and just note that
bias removal remains one of the hardest aspects of the assimilation.

2.2 Formulation of the variational assimilation problem

From the discussion on probability density functions we know that the most likely
solution is also the best solution for a Gaussian pdf. The most likely solution also
gives the minimum of the costfunction defined by a pdf. This costfunction actually
defines what norm best measures the accuracy of the solution (see [17, 16, 18]).
For a Gaussian pdf the costfunction is quadratic, which implies the L2, or least
square, norm. So the optimum solution minimizes the sum of the errors in the
model, background and observations as measured by the L2 norm integrated over
the model volume V and the assimilation time window [0, τ ] (which is just a fancy
way of saying that the optimum solution minimizes the following costfunction),

J(~x) =
1

2

∫

V
dξ
∫ τ

0
dt
∫

V
dξ′

∫ τ

0
dt′(

∂~x

∂t
+ ~M(~x))T ~Q−1(ξ, t, ξ′, t′)(

∂~x

∂t
+ ~M(~x))

+
1

2

∫

V
dξ
∫

V
dξ′(~x(ξ, 0) − ~xb(ξ, 0))T ~B−1(ξ, ξ′)(~x(ξ′, 0) − ~xb(ξ

′, 0))

+
1

2

∫

V
dξ
∫ τ

0
dt
∫

V
dξ′

∫ τ

0
dt′(~y − ~H(~x))T ~R−1(~y − ~H(~x)) (17)

First a couple of clarifications. The double integration over time and space just
expresses all possible correlations between errors at (ξ, t) (terms to the left of the
correlation functions) and errors at (ξ ′, t′) (terms to the right). The observation
error in particular may look odd, but we have to express precisely where and when
to evaluate the departures yn − Hn(~x). We do this by multiplying yn − Hn(~x) by a

‘localization function’ φn(ξ, t) so that element n of (~y − ~H(~x)) is

(~y − ~H(~x))n = φn(ξ, t)(yn − Hn(~x)) (18)

The localization function, which has the following property,

∫

V
dξ
∫ τ

0
dtφn(ξ, t) = 1 (19)
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can be anything from a delta function at the observation time and location to more
advanced averaging in space or time, say over a satellite footprint. A particular form
of the localization function, which is often used to simplify assimilation algorithms,
is to evaluate all the departures at the same time (the analysis time) irrespective of
when the observations were made within the assimilation window.

Now the standard tools of variational analysis can be used to obtain the optimum
solution (see e. g. [14]). Let ~xa (our analysis) be the model state which gives the
minimum of J with respect to a variation of ~x. Define

~x(ξ, t) = ~xa(ξ, t) + γ~η(ξ, t) (20)

where γ is a constant and ~η(ξ, t) is an arbitrary vector (with dependent components
however). The minimum of Eq. 17 is found from

lim
γ→0

dJ

dγ
= 0 (21)

In Fig. 9 an interpretation of the variational procedure is shown.

(ξ,t)

x

xa+γη
xa

Figure 9: Variation of ~x(ξ, t) to get the minimum of J(~x).
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2.3 Solution of the variational problem

Using Eq. 20 in Eq. 17 we get the following condition at the minimum of J ,

lim
γ→0

d

dγ
(

1

2

∫

V
dξ
∫ τ

0
dt(

∂~xa

∂t
+ γ

∂~η

∂t
+ ~M(~xa + γ~η))T

×
∫

V
dξ′

∫ τ

0
dt′ ~Q−1(

∂~xa

∂t
+ γ

∂~η

∂t
+ ~M(~xa + γ~η))

+
1

2

∫

V
dξ
∫

V
dξ′(~xa + γ~η − ~xb)

T ~B−1(~xa + γ~η − ~xb)

+
1

2

∫

V
dξ
∫ τ

0
dt
∫

V
dξ′

∫ τ

0
dt′(~y − ~H(~xa + γ~η))T ~R−1(~y − ~H(~xa + γ~η)))

=
∫

V
dξ
∫ τ

0
dt(

∂~η

∂t
+

∂ ~M

∂~xa

~η)T~λ(ξ, t)

+
∫

V
dξ
∫

V
dξ′~ηT (ξ, 0) ~B−1(~xa(ξ

′, 0) − ~xb(ξ
′, 0))

−
∫

V
dξ
∫ τ

0
dt
∫

V
dξ′

∫ τ

0
dt′(

∂ ~H

∂~xa

~η)T ~R−1(~y − ~H(~xa))

= 0 (22)

where we have introduced the ‘adjoint variable’ ~λ as

~λ(ξ, t) =
∫

V
dξ′

∫ τ

0
dt′ ~Q−1(ξ, t, ξ′, t′)(

∂~xa(ξ
′, t′)

∂t
+ ~M(~xa(ξ

′, t′))) (23)

and the jacobians ∂ ~M
∂~xa

and ∂ ~H
∂~xa

of the model and the observation operators, which
are defined by

lim
γ→0

d ~M(~xa + γ~η)

dγ
= lim

~x→~xa

∂ ~M (~x)

∂~x
~η =

∂ ~M

∂~xa

~η (24)

and the same for ~H.

• Example: Model errors. From Eq. 1 we recognize the model error ~εm as the
term to the right of ~Q in the definition of the adjoint variable. By inverting the
relationship we get an explicit expression for the model errors at the minimum
of the costfunction

~εm(ξ, t) =
∫

V
dξ′

∫ τ

0
dt′ ~Q(ξ, t, ξ′, t′)~λ(ξ′, t′) (25)

• Example: The jacobian of an advection operator. In the one-dimensional ad-
vection equation ∂ϕ

∂t
+ u∂ϕ

∂ξ
= 0, the jacobian of the operator Mϕ = u∂ϕ

∂ξ
is,

with the state vector ~x = (u, ϕ),

∂Mϕ

∂~xa

~η =

(

0 0
∂ϕa

∂ξ
ua

∂
∂ξ

)(

ηu

ηϕ

)

=
∂ϕa

∂ξ
ηu + ua

∂ηϕ

∂ξ
(26)

We note that the jacobian of a nonlinear operator acts linearly on ~η. The
jacobian also appears when operators are linearized, and is then referred to as
the tangent linear operator.
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If we can rearrange the expression for the minimum in Eq. 22 so that ~η only ap-
pears as a multiplicative factor, then the remaining expressions must be zero at the
minimum of J , since ~η is arbitrary. This can be achieved by integration by parts.
Term by term we get

∫

V
dξ
∫ τ

0
dt(

∂~η

∂t
)T~λ =

∫

V
dξ~ηT (ξ, τ)~λ(ξ, τ) −

∫

V
dξ~ηT (ξ, 0)~λ(ξ, 0)

−
∫

V
dξ
∫ τ

0
dt~ηT (ξ, t)

∂~λ

∂t
(27)

∫

V
dξ
∫ τ

0
dt(

∂ ~M

∂~xa

~η)T~λ =
∫

V
dξ
∫ τ

0
dt~ηT (ξ, t)(

∂ ~M

∂~xa

)∗~λ (28)

∫

V
dξ
∫ τ

0
dt
∫

V
dξ′

∫ τ

0
dt′(

∂ ~H

∂~xa

~η)T ~R−1(~y − ~H(~xa)) =

∫

V
dξ
∫ τ

0
dt
∫

V
dξ′

∫ τ

0
dt′~ηT (ξ, t)(

∂ ~H

∂~xa

)∗ ~R−1(~y − ~H(~xa)) (29)

Here we have introduced a compact notation for the integration by parts of the

jacobians, namely the adjoint operators ( ∂ ~M
∂~xa

)∗ and ( ∂ ~H
∂~xa

)∗.

• Example: The adjoint of ∂
∂t

. We have already seen an example of an adjoint
operator in Eq. 27. If we use the simplified notation < ·, · > for the integration
of the product of the two vectors over time and space (that is, we define a scalar
product in this way) we see that

<
∂

∂t
~η, ~λ >=< ~η, (

∂

∂t
)∗~λ > (30)

where the adjoint operator ( ∂
∂t

)∗ is

(
∂

∂t
)∗ = δ(t − τ) − δ(t) −

∂

∂t
(31)

and δ(t − τ) and δ(t) are Dirac delta functions.

• Example: The adjoint of the advection jacobian. We assume that the one-
dimensional advection takes place in a periodic domain [0, L]. Integration by
parts in ξ gives

∫ L

0
dξ
∫ τ

0
dt

((

0 0
∂ϕa

∂ξ
ua

∂
∂ξ

)(

ηu

ηϕ

))T (

λu

λϕ

)

=
∫ L

0
dξ
∫ τ

0
dt(

∂ϕa

∂ξ
ηuλu + ua

∂ηϕ

∂ξ
λϕ)

=
∫ τ

0
dt[uaηϕλϕ]L0 +

∫ L

0
dξ
∫ τ

0
dt(ηu

∂ϕa

∂ξ
λu − ηϕ

∂

∂ξ
(uaλϕ))

=
∫ L

0
dξ
∫ τ

0
dt

(

ηu

ηϕ

)T









∂ϕa

∂ξ
0

0 −(∂ua

∂ξ
+ ua

∂
∂ξ

)









(

λu

λϕ

)

(32)

Because of the periodicity, all boundary terms disappear, but it is straightfor-
ward to allow for any boundary conditions.
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The rearranged expression for the minimum of J is now

0 =
∫

V
dξ
∫ τ

0
dt~ηT (ξ, t)(−

∂~λ

∂t
+ (

∂ ~M

∂~xa

)∗~λ −
∫

V
dξ′

∫ τ

0
dt′(

∂ ~H

∂~xa

)∗ ~R−1(~y − ~H(~xa)))

+
∫

V
dξ~ηT (ξ, 0)(

∫

V
dξ′ ~B−1(~xa(ξ

′, 0) − ~xb(ξ
′, 0)) − ~λ(ξ, 0))

+
∫

V
dξ~ηT (ξ, τ)~λ(ξ, τ) (33)

2.4 Summary of the variational solution

The final equations now follow from that the arbitrary vector function ~η can be varied
independently in each of the three integrals in Eq. 33, so the expressions following
~η in each of the integrals must be identically zero. Add to this the definition of the
adjoint variable ~λ in Eq. 23 and we have the generalized inverse solution consisting of
the forward model equation with initial conditions and the Euler-Lagrange (adjoint)
equation with end conditions

~λ(ξ, τ) = ~0 (34)

−
∂~λ

∂t
+ (

∂ ~M

∂~xa

)∗~λ =
∫

V
dξ′

∫ τ

0
dt′(

∂ ~H

∂~xa

)∗ ~R−1(~y − ~H(~xa)) (35)

∫

V
dξ′ ~B−1(ξ, ξ′)(~xa(ξ

′, 0) − ~xb(ξ
′, 0)) − ~λ(ξ, 0) = ~0 (36)

∂~xa

∂t
+ ~M(~xa) =

∫

V
dξ′

∫ τ

0
dt′ ~Q(ξ, t, ξ′, t′)~λ(ξ′, t′) (37)

These are the equations fulfilled by the optimum solution ~xa at the minimum of
the Gaussian costfunction. The solution includes an estimate of the model errors in
terms of the adjoint variable. An inverse problem of this form, where the model is not
assumed to be exact, is called a weak constraint problem. The forward and adjoint
equations are coupled, since ~λ appears in the forward equation and ~xa appears in
the adjoint equation. This makes it harder to construct assimilation algorithms for
this general case, but it can be done (see [3, 4]).

A simplification is to assume the model to be exact ( ~Q = ~0) which gives a strong
constraint problem. Now the adjoint only influences the initial condition of the so-
lution, and the forward model integration is simplified. This assumption is made in
the formulation of most assimilation algorithms. This is fine when it can be demon-
strated that the model error is small relative to observation and background errors.
Even when model errors are not quite negligible, they are often not included in the
assimilation either because they are too difficult to characterize or too expensive to
calculate.

The solution for the generalized inverse problem is sketched in Fig. 10.
The generalized solution can be translated directly onto a discrete form, replacing

continuous fields and operators by corresponding vectors and matrices. For the
discrete case it is often an advantage to let the model operator include the time
derivatives. One particular simplification in the discrete case is that the adjoint of a
linear operator, expressed as a matrix, is equal to the transpose of that matrix. This
property is very useful when coding the adjoints of discrete operators.
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t
tMt10 τ

Cm·(ym-Hm(xa))

λ(ξ,t)

xb+ B λ

xa(ξ,t)

t

tMt10 τ

Figure 10: The solution of the generalized inverse problem. Observations are a
source term in the backward-in-time integration of the adjoint ~λ. This gives a jump
at each observation which translates into a change in the forcing in the forward
integration of ~xa. The initial condition receives a contribution ~B~λ. For the strong
constraint problem the adjoint solution is unchanged, but there is no contribution to
the forcing of the forward integration. When error correlations in time are included,
the changes in ~λ and ~xa go via smooth transitions.

• Example: Observations in the Euler-Lagrange equation. The right hand side
of the Euler-Lagrange equation Eq. 35 contains observations as source terms
in the backward-in-time integration. Going back to the steps in the solution
above, we recall that everything to the right of ~R−1 is a function of the primed
coordinates (ξ′, t′), and everything to the left is a function of (ξ, t), so we
should have written

r.h.s. = (
∂ ~H

∂~xa

)∗ ~R−1
∫

V
dξ′

∫ τ

0
dt′(~y − ~H(~xa))

A departure
∫

V
dξ′

∫ τ

0
dt′φn(ξ′, t′)(yn − Hn(~xa))

is spread by ~R−1 to give departures at all (correlated) observation points. Then

( ∂ ~H
∂~xa

)∗ moves the resulting departures at observation points to a continuous
increment in the model variables. In the discrete case the right hand side
would become HTR−1(y − H(xa)).

• Example: Observation and model space. In observation space all quantities
are comparable with the observations: yn and Hn(~x) are both in observation
space. In model space all quantities are comparable with the state vector:
~x and (∂Hn

∂~xa
)∗(yn − Hn(~xa)) are examples. Assimilation algorithms can be

formulated in either model or observation space: for each model space algo-
rithm there is a corresponding dual form of the algorithm in observation space
(see [7]). The link between the two spaces are the observation operators. In
observation space, the assimilation problem dimension is determined by the
number of observations. This can be an advantage when there are relatively
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few observations, like in some oceanographic applications. In model space,
the assimilation problem is determined by the model dimension. This can be
an advantage when more and more observations are assimilated, like satellite
data in meteorological assimilation systems.

• Example: Implementation of assimilation algorithms. The generalized inverse
gives the exact relation for the analysis in the continuous case. When imple-
menting assimilation algorithms we are always working with discrete models.
The discrete equivalent of the generalized inverse must be coded so that it is
internally consistent. For example, the adjoint of a linear operator must be
exactly the transpose of the matrix for that operator. This we cannot guaran-
tee by discretizing the continuous form of the generalized inverse directly. A
practical approach is to derive the discrete tangent linear equivalents of all op-
erators, and then derive the adjoint operators as the transpose of the tangent
linear operators.

3 Common assimilation algorithms

We will now turn our attention to specific assimilation algorithms: optimal interpo-
lation (OI), three-dimensional variational assimilation (3DVAR), four-dimensional
variational data assimilation (4DVAR) and the Kalman filter. We will interpret
each of the algorithms in terms of the generalized inverse solution, in particular
what aspects of the generalized inverse they capture and what the approximations
are. Starting from the generalized inverse, we will translate the terms remaining
after approximations into commonly encountered expressions for the algorithms,
moving to discrete notation where appropriate.

3.1 Optimal interpolation and 3DVAR

OI and 3DVAR are the simplest algorithms of the above – they do not include
the dynamic evolution of the model in the assimilation. While OI and 3DVAR
are similar in this respect, there are significant differences which are important in
applications.

3.1.1 Relation to the generalized inverse

• Approximation 1: No model errors, ~Q = ~0.

• Approximation 2: The evolution of ~xa is described perfectly by ∂~xa

∂t
= ~0, i. e.

~M = ~0.

• Approximation 3: Evaluate all observation operators at t = τ/2. This means
the localization function for an observation yn is φn(ξ)δ(t−τ/2), with δ(t−τ/2)
a Dirac delta function at τ/2.

All that now remains of the generalized inverse solution is the following (see Fig. 11)

~λ(ξ, τ) = ~0
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t

0 ττ/2

x

t
0 ττ/2

λ

}HTR-1(y-H(xa))

Figure 11: The OI/3DVAR analysis as seen by the generalized inverse. All depar-
tures are evaluated at τ/2 and the model operator is identity.

−
∂~λ

∂t
= δ(t − τ/2)

∫

V
dξ′(

∂ ~H

∂~xa

)∗ ~R−1(~y − ~H(~xa))

∫

V
dξ′ ~B−1(ξ, ξ′)(~xa(ξ

′, 0) − ~xb(ξ
′, 0)) − ~λ(ξ, 0) = ~0

∂~xa

∂t
= ~0

Integrating the adjoint equation backward in time from the zero end condition we
get a jump in ~λ at t = τ/2 time where all the observation operators are evaluated,

~λ(ξ, τ/2) =
∫

V
dξ′(

∂ ~H

∂~xa

)∗ ~R−1(~y − ~H(~xa)) (38)

Here the time dimension of the covariance function has disappeared, since all depar-
tures are evaluated at the same time. The solution then remains constant between
t = 0 and t = τ/2 (~λ(ξ, 0) = ~λ(ξ, τ/2) and ~xa(ξ, 0) = ~xa(ξ, τ/2)) so the initial
condition is also valid at t = τ/2. By defining the analysis time in the middle of
the assimilation window we use background ~xb which is never further away than τ/2
from any observation,

∫

V
dξ′( ~B−1(ξ, ξ′)(~xa(ξ

′, τ/2) − ~xb(ξ
′, τ/2)) − (

∂ ~H

∂~xa

)∗ ~R−1(~y − ~H(~xa))) = ~0 (39)

3.1.2 Discrete formulation

We now continue the description of OI and 3DVAR using the discrete formulation
in which they are mostly expressed. Converting the above expression to the discrete
case gives

B−1(xa − xb) − HTR−1(y − H(xa)) = ~0 (40)

We need to solve for xa, but H(xa) is nonlinear in xa, and the adjoint operator
HT contributes to the nonlinearity as well (remember adjoints and transposes are
equivalent in the discrete case).
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• Approximation 4: Let H be a linear approximation to the jacobian of H
(a tangent linear approximation). Replace H(xa) by the linear expression
H(xb) + H(xa − xb) and the (nonlinear) adjoint HT of the jacobian by the
(linear) adjoint HT of the tangent linear approximation.

The linearized equation is

B−1(xa − xb) − HTR−1(y − H(xb) − H(xa − xb)) = ~0 (41)

After some rearrangement we arrive at the following equivalent expressions (see [5])
for the optimal solution xa,

xa = xb + K(y − H(xb)) (42)

K = BHT (HBHT + R)−1 (43)

where K is the gain or weight matrix. A measure of the accuracy of the analysis is
given by the analysis error covariance matrix A (see [5])

A = (I − KH)B (44)

• Example: Interpretation of the gain matrix. HBHT is just the background
error covariance expressed in observation space. HT takes the departures
divided by the sum of observation and background covariances back to model
space, where it is multiplied by the background error. This is analogous to
the factor σ2

b/(σ2
b + σ2

o) which arises in the optimal least square solution of
a single direct observation y with error variance σ2

o of a quantity x, given a
background estimate xb with error variance σ2

b ,

xa = xb +
σ2

b

(σ2
b + σ2

o)
(y − xb) (45)

We see here again how the observation operators translate between observa-
tion and model space, making it possible to compare matrixes of different
dimensions (e. g. R which is in observation space and B, which is in model
space).

We have thus shown that the solution of the variational assimilation problem under
approximations 1–4 is equivalent to Eqs. 42– 43 for the solution at the minimum.
This suggests two types of algorithms for solving the assimilation problem on this
form. We can solve the expression for xa directly by matrix inversions. But we
can also solve the variational problem which leads to xa iteratively, starting from
xb. We now briefly discuss optimal interpolation and three-dimensional variational
assimilation as examples of these two approaches.

3.1.3 Optimal interpolation – OI

In optimal interpolation the analysis equation is solved directly by inversion. In
the inversion the gain matrix K is simplified by assuming that only the closest
observations determine the analysis increment at ξ. The global analysis problem
is thus divided into blocks, and a local optimal analysis is found for each block
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(see Fig. 12). This reduces the size and the time it takes to solve the analysis
problem numerically. However, this is not a global solution, and jumps can occur
in the analysis when solutions from different blocks are joined together. Another
disadvantage of optimal interpolation is that it is difficult to use observations with
complex observation operators. This is because background errors need to be formed
for the model equivalent of each observation. For this reason only observations with
simple observation operators are used in OI.

ξ
1

ξ
2

Figure 12: An example of data selection in OI. There is some overlap between ob-
servations used to determine the analysis at ξ1 and ξ2.

• Example: Satellite radiances The observation operator for satellite radiances
includes a radiative transfer model. The model equivalent background error
has to take into account the effect of the radiative transfer model on a col-
umn of temperature, humidity, ozone and many more parameters. Instead of
radiances, retrievals of temperature, humidity and ozone are used in OI. This
brings other problems, since retrievals use background estimates of the mete-
orological fields, leading to correlations between observation and background
errors.

3.1.4 Three-dimensional variational assimilation – 3DVAR

In 3DVAR the analysis equation is solved iteratively, starting from ~x 6= ~xa,

B−1(x − xb) − HTR−1(y − H(xb) − H(x − xb)) 6= ~0 (46)

We recognize this expression as the gradient J ′(x) of the (linearized) costfunction
J(x),

J(x) =
1

2
(y − H(xb) − H(x− xb))

TR−1(y − H(xb) − H(x − xb))

+
1

2
(x − xb)

TB−1(x − xb) (47)

The linearized analysis problem has thus a quadratic costfunction, and we can use
J and J ′ in a minimization algorithm to approach the unique minimum of J where
J ′ = 0. This gives us the analysis xa (see Fig. 13).
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Compared with OI, 3DVAR gives a global analysis and it is easy to use any
observation. We only need the observation operator and its tangent linear and
adjoint in the analysis. However, it requires significant effort to develop observation
operators for complex observations. For satellite radiances for example, a ‘fast’
radiative transfer model together with its tangent linear and adjoint need to be
developed.

J(x)
J(xb)

xb

x2

x1

xa

Figure 13: Minimization of a quadratic costfunction J(x). The gradient of the
costfunction and the costfunction itself are supplied to a minimization algorithm
which works out how to change x to obtain a smaller value of the costfunction.

3.1.5 Dual formulation of OI/3DVAR

In the above analysis equation K(y − H(xb)) is an analysis increment in model
space. An alternative way to solve the problem is to find analysis increments in
observation space and then map them back to model space. This dual formulation
(often referred to as ‘PSAS’) is obtained by rewriting the analysis equation as follows

wa = (HBHT + R)−1(y − H(xb)) (48)

xa − xb = BHTwa (49)

This system can be solved directly or iteratively, leading to the dual formulation of
OI and 3DVAR. See [7] for a further discussion.

3.2 Four-dimensional variational assimilation – 4DVAR

In contrast to 3DVAR and OI, 4DVAR includes the dynamic evolution of the model
in the assimilation. The 4DVAR algorithm is very close to the generalized inverse
– only model errors are neglected. The essential difference between 3DVAR and
4DVAR is illustrated in Fig. 14.
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0 τ
3DVAR
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0 τ
4DVAR
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b

x
a

Figure 14: The difference between 3DVAR and 4DVAR – 4DVAR is a time/model
consistent interpolator of departures.

3.2.1 Relation to the generalized inverse

• Approximation 1: No model errors, ~Q = ~0.

The only change to the generalized inverse solution is that the forward model equa-
tion no longer depends on the adjoint variable ~λ,

∂~xa

∂t
+ ~M(~xa) = ~0 (50)

This makes the assimilation problem much easier to solve. Although ~xa still appears
in the adjoint equation, an iterative scheme can be designed to arrive at the analysis.
To see this, let us rewrite the equations in terms of ~xb and the analysis increment
δ~xa,

δ~xa = ~xa − ~xb (51)

Inserting this in the model and observation operators, we get

~M(~xa) = ~M(~xb) +
∂ ~M

∂~xa

δ~xa (52)

and similar for ~H(~xa), with the nonlinear jacobians ∂ ~M
∂~xa

and ∂ ~H
∂~xa

of the model and
observation operators appearing. This gives

~λ(ξ, τ) = ~0 (53)

−
∂~λ

∂t
+ (

∂ ~M

∂~xa

)∗~λ =
∫

V
dξ′

∫ τ

0
dt′(

∂ ~H

∂~xa

)∗ ~R−1(~y − ~H(~xb) −
∂ ~H

∂~xa

δ~xa) (54)
∫

V
dξ′ ~B−1(ξ, ξ′)δ~xa(ξ

′, 0) − ~λ(ξ, 0) = ~0 (55)

∂δ~xa

∂t
+

∂ ~M

∂~xa

δ~xa = ~0 (56)

∂~xb

∂t
+ ~M(~xb) = ~0 (57)

Here the evolution of the background ~xb is determined by the model operator ~M ,

whereas the (nonlinear) jacobian ∂ ~M
∂~xa

of the model operator determines the evolution
of the analysis increment δ~xa. The 4DVAR integration is shown in Fig. 15.
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Figure 15: 4DVAR adjoint and forward integration.

3.2.2 Iterative solution of 4DVAR

An iterative procedure for solving the generalized inverse problem without model
errors could be formulated as follows:

1. Integrate ~xb forwards 0 → τ , and evaluate the departures ~y − ~H(~xb) along the
way at the proper time.

2. Integrate ~λ backwards τ → 0, with δ~xa = 0 on the first iteration.

3. Update δ~xa(ξ, 0).

4. Integrate δ~xa forwards 0 → τ , and evaluate ∂ ~H
∂~xa

δ~xa along the way at the proper
time.

5. Repeat the iteration of δ~xa until the solution converges.

The problem with this iterative procedure is that it will normally fail to converge
to the optimal analysis for nonlinear systems. For linear problems however, this
procedure will always converge. We discussed earlier, see Fig. 3, that the nonlinear
problem has a non-quadratic costfunction with multiple minima, which we can try
to solve as a sequence of linear problems with quadratic costfunctions by linearizing
each problem in the sequence around the solution of the preceding problem. This is
the approach which we do apply for solving the 4DVAR problem.

• Approximation 2: Solve the nonlinear analysis problem as a sequence of linear
analysis problems.

Although there is still no formal guarantee that we will converge towards the optimal
analysis, we know that with a good initial estimate of the background and for weakly
nonlinear systems we stand a good chance to arrive at a solution which is accurate
enough.

3.2.3 4DVAR solved as a sequence of linear problems

We will now show how 4DVAR is solved as a sequence of problems linear in δ~x. Let
us assume ~xi−1 is the solution to linear problem i − 1, starting from ~x0 = ~xb. To
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obtain ~xi = ~xi−1 +δ~xi we formulate a linearized problem for the solution of δ~xi. The
model and observation operator and their jacobians are made linear in δ~xi by using
~xi−1 instead of ~xa in their expression, giving the following

~λi(ξ, τ) = ~0 (58)

−
∂~λi

∂t
+ (

∂ ~M

∂~xi−1

)∗~λi =
∫

V
dξ′

∫ τ

0
dt′(

∂ ~H

∂~xi−1

)∗ ~R−1(~y − ~H(~xi−1) −
∂ ~H

∂~xi−1

δ~xi) (59)

∫

V
dξ′ ~B−1(ξ, ξ′)δ~xi(ξ

′, 0) − ~λi(ξ, 0) = ~0 (60)

∂δ~xi

∂t
+

∂ ~M

∂~xi−1
δ~xi = ~0 (61)

∂~xi−1

∂t
+ ~M(~xi−1) = ~0 (62)

Now we can apply the iterative procedure outlined above and converge to a minimum
for this linear analysis problem as follows:

1. Integrate ~xi−1 forwards 0 → τ , and evaluate the departures ~y − ~H(~xi−1) along
the way at the proper time.

2. Solve δ~xi iteratively, using δ~x 6= δ~xi in the remaining equations. This is the
same approach as used in 3DVAR, and again we can interpret finding δ~xi as
minimizing a costfunction Ji whose gradient is given by the initial condition
of the equation system,

J ′

i(δ~x) =
∫

V
dξ′ ~B−1(ξ, ξ′)δ~x(ξ′, 0) − ~λ(ξ, 0) 6= ~0 (63)

Here ~λ(ξ, 0) is the result of transporting all departures (~y− ~H(~xi−1)−
∂ ~H

∂~xi−1

δ~x)

back in time to t = 0 with linear operators. An important observation is that
~λ(ξ, 0) is a linear function of δ~x(ξ, t), and even stronger, it can be expressed
as a linear function of δ~x(ξ, 0) only through the linear forward and backward
integrations of the system. This simplifies the costfunction to only depend on
δ~x(ξ, 0).

When we interpret the above iterative procedure as a minimization of the cost-
function Ji with respect to δ~xi(ξ, 0), the forward–backward integrations of δ~x and
~λ are seen only as means to calculate the gradient J ′

i. One advantage of looking
at the 4DVAR problem from the generalized inverse point of view is that we see
the adjoint model integration as transporting observational information back to the
analysis time. The adjoint integration, followed by the forward integration, spreads
the influence of a single observation to all times within the assimilation window (see
Fig. 16).

• Example: Inner and outer loops. In the iterative solution of the 4DVAR prob-
lem we often use the terms inner and outer loops. Outer loop refers to the
sequence of linear problems which give ~xi. Inner loops refer to the iterations
performed to find the solution to each linear problem. Usually only a few
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Figure 16: Each observation influences the solution at all times within the assimi-
lation window in 4DVAR.

outer loops are enough (2–3), and for each outer loop a few tens of inner loops
are performed. Compared to 3DVAR, the consistent use of observations in
4DVAR thus comes at a considerable extra computational cost. The com-
putational cost can be reduced considerably by solving the inner loops (or
equivalently, the iterations of the costfunction) at a lower resolution. This
procedure is referred to as the incremental method. It can of course also be
applied to the iterations of the costfunction in 3DVAR.

3.3 The Kalman filter

3.3.1 Cycling the analysis

In the generalized inverse solution of the analysis problem the background field and
its error covariance matrix were given to the analysis without any reference to how
they were obtained. A more general view of the analysis problem is to include the
production of the background field. This process is referred to as cycling the analysis.
Since background fields are usually obtained as model forecasts from a previous
analysis, their error characteristics depend on the errors in the previous analysis
as well as the model errors in the forecast. In other words, the background error
covariance matrices are evolving from one analysis to the other. The time evolution
of the background errors can be important in three ways. First, we can distinguish
regions where the background errors were reduced by the use of observations in
the previous analysis. Second, we can distinguish regions where the background
errors grew because of model errors. Third, the physics and dynamics of the model
integration can both amplify and attenuate the background errors. Below we will
discuss the Kalman filter which includes the time evolution of the background errors.

As an aside, it is worth pointing out that there are hybrid assimilation algorithms
which combine features of 4DVAR and the Kalman filter, for example by including
the evolution of the background error in a 4DVAR framework.
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3.3.2 Relation to the generalized inverse

Although the Kalman filter is formulated quite differently from the generalized in-
verse, we can use the present framework to interpret the Kalman filter. The Kalman
filter allows for model errors and is in that way close to the generalized inverse. An
important difference is that the Kalman filter performs an analysis at each timestep
of the (discrete) model, using only the observations available during that timestep
[ti, ti+1]. In the generalized inverse all observations in the assimilation window were
used simultaneously. If we compare the Kalman filter integration and the 4DVAR
integration inside the assimilation window [0, τ ] of 4DVAR, the 4DVAR solution
is a continuous curve, whereas the Kalman filter has jumps at each timestep (see
Fig. 17). We can interpret the Kalman filter as solving the generalized inverse
problem at each timestep of the model, so that the assimilation window shrinks to
[ti, ti+1]. In practice, the 4DVAR and the Kalman filter solutions are close to each
other at the end of the 4DVAR assimilation window. The solutions are identical in
the case of a linear system if there are no model errors and the background errors
are the same at the beginning of the assimilation window.

t

t
i

t
i+1

0 τ

KALMAN FILTER

t

0 τ

4DVAR

x
b

x
a

Figure 17: The difference between the Kalman filter and 4DVAR. The Kalman filter
performs an analysis at each model timestep. 4DVAR analyses all observations
within a larger assimilation window simultaneously.

Let us now consider a single timestep of the (discrete) model as the assimilation
window, replacing [ti, ti+1] by [0, τ ]. All departures are evaluated at the begin of
the timestep t = 0. This means the localization function for an observation yn is
φn(ξ)δ(t), with δ(t) a Dirac delta function at t = 0. This eliminates the adjoint

equation from the generalized inverse and ~λ(ξ, 0) is obtained directly by evaluating
all observation departures at t = 0. This gives an equation for the analysis at t = 0
which is identical to the OI/3DVAR case with t = τ/2 replaced by t = 0,

∫

V
dξ′( ~B−1(ξ, ξ′)(~xa(ξ

′, 0) − ~xb(ξ
′, 0)) − (

∂ ~H

∂~xa

)∗ ~R−1(~y − ~H(~xa))) = ~0 (64)

As background for the next analysis at t = τ we make a forecast ~xf(ξ, t) 0 → τ
starting from the analysis ~xa(ξ, 0). In the forecast step of the Kalman filter, the
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model error estimate given by the generalized inverse is not used,

~xf (0) = ~xa(0) (65)

∂~xf

∂t
+ ~M(~xf ) = ~0 (66)

Here we have written ~x(0) instead of ~x(ξ, 0) to emphasize the time dimension.

3.3.3 Evolution of the forecast error

The forecast error evolution is obtained by writing ~xf = x̂ + ~εf , where x̂ is the true
(but unknown) state of the system, whose evolution is given by

∂x̂

∂t
+ ~M(x̂) = −δ(t)~εm (67)

Inserting this in the forecast equations gives

~εf(0) = ~εa(0) (68)

∂~εf

∂t
+

∂ ~M

∂x̂
~εf = δ(t)~εm (69)

We notice that the forecast errors are propagated as perturbations on top of the true
model state by the jacobian of the model operator. In the Kalman filter the forecast
errors are considered to evolve linearly during a single timestep of the model. Thus
the jacobian is linearized by replacing x̂ by ~xa,

∂εf

∂t
+

∂ ~M

∂~xa

~εf = δ(t)~εm (70)

Now introduce the following notation for the integration of the model equations over
one timestep 0 → τ ,

~xf(τ) = M0→τ (~xa(0)) (71)

~εf(τ) = M0→τ~εa(0) + ~εm(0) (72)

where M0→τ stands for the nonlinear integration and M0→τ stands for the linearized
tangent linear integration. The forecast error covariance at τ , which is the new
background error covariance, is obtained by multiplying Eq. 72 by its transpose and
making the assumption that analysis and forecast errors are uncorrelated. This gives

~B(τ) = M0→τ
~A(0)MT

0→τ + ~Q(0) (73)

Here we have used that ~εf~ε
T
f = ~B and analogous definitions of ~A and ~Q.
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3.3.4 The discrete formulation of the Kalman filter

We now come to the proper formulation of the Kalman filter as a discrete assimilation
algorithm. The equation for the initial condition is similar to the OI/3DVAR case,
with t = τ/2 replaced by t = 0. As before, replace H(xa) by H(xb) + H(xa −
xb), where H is a a linear approximation to the jacobian of H (the tangent linear
approximation of H). The analysis equations for the Kalman filter are then identical
to the 3DVAR/OI case. To emphasize the cycling nature of the Kalman filter, we
replace 0 → τ by i → i + 1 in the notation,

xa(i) = xb(i) + K(i)(y(i) − H(xb(i))) (74)

K(i) = B(i)HT (i)(H(i)B(i)HT (i) + R(i))−1 (75)

A(i) = (I − K(i)H(i))B(i) (76)

where K is the Kalman gain matrix. The analysis error covariance matrix A gives
an a posteriori estimate of the quality of the analysis. The forecast to the next step
of the analysis gives

xb(i + 1) = Mi→i+1(xa(i)) (77)

B(i + 1) = Mi→i+1A(i)MT
i→i+1 + Q(i) (78)

The Kalman filter is very expensive to evaluate directly, but several approximations
and simplifications can be made to achieve practical assimilation algorithms.
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