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Outline

Part I –
 

On an revised ocean-atmosphere 
physical coupling interface
• Context and guidelines for the design of a new physical interface
• The physical exchanges
• Time sequence of exchanges

Part II -
 

About technical coupling software
• Different technical solutions to assemble model codes
•The OASIS coupler (historic, community,  …)
• Regridding

 
algorithms in OASIS 

• 1st order conservative remapping (2nd

 
order, SUBGRID)

• Non-matching sea-land mask
• Vector interpolation 
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I.1 Context and guidelines for the design of a revised interface
¾ Proposition discussed during the EU PRISM project (definition 

of “standard” physical interfaces), following the PILPS 
experience (Polcher et al 1998)

¾ J.Polcher (LMD), T. Fichefet (UCL), G. Madec (LOCEAN), O. Marti 
(LSCE), S. Planton (Meteo-France), E. Guilyardi (LOCEAN)

• Guidelines:
� physically based interfaces across which conservation of mass,  

momentum and energy can be ensured
� which process should be computed by which component/module
� numerical constraints (stability, regridding, subgrid issues, local 

conservation,…)
� historical and practical constraints
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On a revised ocean-atmosphere physical coupling interface



1*- Sensible heat flux

6*- Evaporation + int.   
energy [+ Qlat ]
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3x- Fresh water flux
4x- Salt flux
7x- Mass of snow and ice

1- Temperature at sea-ice base
3- Highest level temperature (SST)
4- Ocean radiative temp.
8- Absorbed solar radiation (in 1st layer)
5- Surface ocean current
7- Surface height 7

1- Continental runoff
+ internal Energy 8

1*- Surf. Temp
2*- Surf. Roughness
3*- Displacement height
4x- Surface velocity

5

1- Rainfall + int. energy
2- Snowfall + int. energy

3- Incoming  solar radiat.
4- Solar zenith angle
5- Fraction of diffuse

solar radiation
6- Downward infrared 

radiation
7- Sensitivity of atmos 

temp. & humidity to
surf. fluxes

1 1

2*- Surf. emissivity 
3*- Albedo, direct
4*- Albedo, diffuse
5*- Surf. radiative temp.

2

2

Land surface model

Ocean model

Atmosphere model

Ocean surface module

Sea ice model (wave model)

Surface layer turbulence
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On a revised ocean-atmosphere physical coupling interface
I.2 The physical exchanges

6

1x- Non solar heat flux
2x- Solar  radiation

7*- Wind stress

5x- Wind stress
6x- U^3

8- Subgrid fractions

Note on subgrid fraction
dependance:
<>x- Sea Ice categories

(incl. open ocean)
<>*- Sea Ice or Land Surf.

categories8- Subgrid fractions
2- Salinity at sea-ice base
6- Sea surface salinity

1*- ρCd 42*- ρCe 4
3*- ρCh

1- Surface pressure
2-4 Air temperature, humidity and wind
5- Mean scalar wind speed
6- Height of these variables 3

3
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I.3 Time sequence of exchanges

Atm

SLT

OSM

Oce

7

5

6
sea ice

 
t

Frequency of coupling exchanges:

F7 = F6 < F5 = F3 = F1 =  F4 =  F2 

slow fast

3
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4
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atm
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4
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9 Separation of fast ocean + sea ice surface processes involving heat, 
water and momentum exchanges with the atmosphere from slower 
deeper ocean processes.

9 Calculation of fluxes at the resolution of the surface (would be non-
physical to regrid the turbulent exchange coefficients Cd, Ce, Ch).

9 Implicit calculation of energy fluxes from the base of the sea-ice to 
the top of the atmosphere.

Part I -
 

On a revised ocean-atmosphere physical coupling interface

Comments and conclusions
• Increased modularity with SLT and OS modules. 

• SLT runs on finer grid and computes surface turbulent coefficient.

• OS computes radiation and turbulent fluxes.
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Why couple ocean and atmosphere (and sea-ice and land 
and …) models?
¾ Of course, to treat the Earth System globally

Part II -
 

About technical coupling software

What does “coupling of codes” imply?
¾ Exchange and transform information at the code interface
¾ Manage the execution of the codes

What are the constraints?
9 The coupling should be easy to implement
9 The coupling should be flexible
9 The coupling should be efficient
9 The coupling should be portable
9 We start from independently developed existing codes
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II.1 Different technical solutions to assemble model codes:

Part II -
 

About technical coupling software

2.
 

use existing communication protocole
 

(MPI, CORBA, UNIX pipe, files, …)

program prog2
…
call xxx_recv (prog1, data)
end

program prog1
…
call xxx_send (prog2, data, …)
end

/ easy
/ flexible
☺

 
efficient

☺
 

portable
/ existing codes

/ easy
/ flexible
. (efficient)
. (portable)
☺

 
existing codes

program prog1
…
call sub_prog2(data)
…
end prog1

1.
 

merge the codes:
program prog2
subroutine sub_prog2(data)
…
end prog2
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. (easy)
☺

 
flexible

☺
 

efficient
☺

 
portable

. (existing codes)

prog1_u1 prog2_u1

coupling

prog1_u2 prog1_u3

coupling
prog2_u2

� Adapt code data structures

3.
 

use coupling framework
 

(ESMF, FMS, …)
� Split code into elemental units
� Write or use coupling units
� Use the framework to build and control a hierarchical merged code

program prog1
…
end prog1

prog1_u1

prog1_u2

prog1_u3

program prog2
…
end prog2

prog2_u1

prog2_u2

. (easy)
☺

 
flexible

. (efficient)
☺

 
portable

☺
 

existing codes

probably best solution in a controlled development environment
4.

 
use a coupler

 
(OASIS, PALM, MPCCI …)

program prog2
…
call cpl_recv (data2, …)
end

program prog1
…
call cpl_send (data1, …)
end

coupler

coupling
configuration
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probably best solution to couple independently developed codes
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1991
 

2001
|--Æ |--- PRISM Æ
OASIS 1 Æ OASIS 2     Æ  OASIS3Æ

Æ OASIS4 Æ
OASIS1, OASIS2, OASIS3:
•low resolution, low number of 2D fields, low coupling frequency:

Îflexibility very important, efficiency not so much!
� New OASIS3_3 release in the next few weeks!

OASIS4:
•high resolution parallel models, massively parallel

 
platforms, 3D fields

Îneed to optimise and parallelise the coupler
� OASIS4 beta version available

II.2 The OASIS coupler

� developed by CERFACS since 1991  to couple existing GCMs
� currently an active collaboration between NLE-IT, CNRS and CERFACS

Part II -
 

About technical coupling software
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II.2.1 OASIS community today
•CERFACS (France)   ARPEGE3-ORCA2/LIM, ARPEGE4-NEMO/LIM-TRIP
•METEO-FRANCE (France) ARPEGE4-ORCA2, ARPEGE3-OPAmed ARPEGE3-OPA8.1/GELATO
•IPSL-

 

LODYC, LMD, LSCE (France)  LMDz-ORCA2/LIM   LMDz-ORCA4 ORCA4
•MPI-M&D (Germany)  ECHAM5-MPI-OM, ECHAM5-C-HOPE, PUMA-C-HOPE, EMAD-E-HOPE
•ECMWF IFS  -

 

CTM  (GEMS),  IFS  -

 

ORCA2   (MERSEA)
•MET Office (UK)

 

MetOffice

 

ATM -

 

NEMO
•IFM-GEOMAR (Germany)

 

ECHAM5  -

 

NEMO (OPA9-LIM) 
•NCAS / U. Reading (UK)

 

ECHAM4 -

 

ORCA2    HADAM3-ORCA2
•SMHI (Sweden)                                 RCA(region.)  –

 

RCO(region.)
•NERSC (Norway)

 

ARPEGE  -

 

MICOM, CAM -

 

MICOM
•KNMI (Netherlands)

 

ECHAM5  -

 

TM5/MPI-OM
•INGV (Italy)

 

ECHAM5  –

 

MPI-OM
•ENEA (Italy)                                   MITgcm

 

-

 

REGgcm
•JAMSTEC (Japan)

 

ECHAM5(T106)  -

 

ORCA ½

 

deg
•IAP-CAS (China)                               AGCM  -

 

LSM
•KMA (Korea)

 

CAM3 –

 

MOM4
•BMRC (Australia)                               BAM3–MOM2, BAM5–MOM2, TCLAPS-MOM
•CSIRO (Australia)

 

Sea Ice code   -

 

MOM4
•RPN-Environment Canada (Canada)

 

MEC  -

 

GOM
•UQAM (Canada)

 

GEM  -

 

RCO
•U. Mississippi (USA)

 

MM5  -

 

HYCOM
•IRI (USA)

 

ECHAM5  -

 

MOM3
•JPL (USA)

 

UCLA-QTCM -

 

Trident-Ind4-Atlantic

Part II -
 

About technical coupling software
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II.3 Regridding
 

algorithms available in OASIS
(Los Alamos SCRIP library, Jones 1999)

• bilinear interpolation
¾ general bilinear iteration in a 
continuous local coordinate system
using f(x) at x1

 

, x2

 

, x3

 

, x4

x11 x22

x33 x44

xx x x
x
x
x

x
x
x

x
x
x

x
x
x

¾ general bicubic iteration         
continuous local coordinate system:             
f(x), δf(x)/δi, δf(x)/δj, δ2f/δiδj in   
x1, x2, x3, x4
for logically-rectangular grids (i,j)

x11 x22

x33 x44

¾ standard  bicubic algorithm:                         
16 neighbour points         

for Gaussian Reduced grids

• bicubic
 

interpolation: conserves 2nd

 

order properties such as wind curl

• n-nearest-neighbours:     weight(x) α
 

1/d
d: great circle distance on the sphere:
d = arccos[sin(lat1)*sin(lat2) + cos(lat1)*cos(lat2) * cos(lon1-lon2)]

• gaussian weighted n-neighbours: weigth(x) α
 

exp(-1/2

 

d2/σ2)

x: source grid point
target grid point

d

x
x

Part II -
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One example of bilinear interpolation error
F = 2 + cos[π

 
* acos(cos(lon)cos(lat)] LMDz

 

grid (96 x 72)  ->  ORCA2

¾ < 0.2% whole domain; ~1% near the coastline

Part II -
 

About technical coupling software
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• One example of bicubic
 

interpolation error F = 2 –
 

cos[π
 

* acos(cos(lon)cos(lat)]
BT42 Gaussian red.  ->  ORCA2 

¾ < 0.2% in equatorial and tropical regions,
< 0.4% at higher or lower latitudes (where the Gaussian grid is effectively reduced),  
up to 4% near the coastline

Part II -
 

About technical coupling software
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II.3 Regridding
 

algorithms available in OASIS 
(Los Alamos SCRIP library, Jones 1999)

� assumes borders are linear in (lat,lon)
¾ Lambert equivalent azimuthal projection near the pole for intersec. calc.

source grid cell
target grid cell

• 1st

 

order conservative remapping: 
¾ conserves integral of extensive properties
¾ weight of a source cell α to intersected area

∫ −=Σ=
=

i

ii
a

N

1n
o

i
o dlon)latsin(  w  wQ  

A
1 Q with

n

nnn

C

Qa1
Qa2 Qo

i w n =i nC

Other methods e.g.:
• Monte Carlo random walk
• Projection of the source and target polygons on a plane (IPSL)
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About technical coupling software

Actual limitations:
• assumes sin(lat) linear function of lon

 
(for line integral calculation)

¾ need to use a projection near the pole (as done for intersect. calc.)
• exact calculation is not possible as "real shape" of the borders are not known

¾ could use of border middle point
¾ to ensure conservation, need to normalize by true area of the cells
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• One example of conservative remapping error F = 2 –
 

cos[π
 

* acos(cos(lon)cos(lat)]
ORCA2 -> LMDz

 

(96x72)

¾ < 0.2% everywhere except
~ 0.8% for LMDz

 
last row close to the North pole

~ 2% near the coastline

Part II -
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II.4 Problem with 1st
 

order conservative 
remapping

(low to high resolution) :

• Solution 1:  use 2nd

 
order conservative remapping: 

 wQ
)(cos

1  wQ  wQ  Q i
3

ai
2

ai
1a

i
o lonlatlat ∂

∂
+

∂
∂

+=

aa T, Q

i
o

i
o T , Q
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Solar type:

• Solution 2:  use SUBGRID transformation: 

Non-solar type:

a
a

i
oi

o Q
)–  (1
)–  (1  Q

α
α

=

)TT(
T
QQ  Q a

i
o

TT

a
a

i
o

a

−
∂
∂

+=
= *conservative if αa

 

/Ta

 

correspond to 
conservative remapping of αo

 

/To
i i
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II.5 Problem with non-matching sea-land masks   wQ  
A
1 Q i

a

N

1n
o

i
o nn=

Σ=

1-
 

Ideally: Support subsurfaces
 

in the atmosphere 
and use the ocean land-sea mask in the atmosphere to determine 
the fractional area of each type of surface

2-“DESTAREA”
 

option
¾ local flux conservation
¾ possibly unrealistic flux values

=oA 
W

3-“FRACAREA”
 

option
¾ no local conservation of flux
¾ realistic flux values
+ nearest non-masked value for ocean cells 
covered only with masked atmospheric cells

=oA 
W

L W

W

L W

W

¾ no local conservation of 
flux
¾ global conservation can 
be artificially imposed

Part II -
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II.6 Vector interpolation (winds, currents, …)

local

spherical
cartesian

� interpolation of vectors component per component 
is not accurate, especially where the referential 
changes rapidly

Example interpolation of a zonal
 

wind in 
the spherical referential near the pole

+1

+1

¾At x, one would expect a zonal wind between 0 and 1.
¾Interpolation comp. per comp. -> zonal wind of 1.

Solution (proposed by O. Marti, LSCE, implemented in OASIS):
•

 
“turn”

 
the  vector in the spherical referential and project the resulting 

vector in a cartesian
 

referential
• interpolate the 3 components in the cartesian

 
referential

• project back in the spherical referential; check that k component is zero
• possibly “turn”

 
the resulting vector in the target local referential

Part II -
 

About technical coupling software
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Conclusions
• Different technical solutions to assemble model codes:

•Coupling framework (e.g. ESMF): 
¾ best solution in a controlled development environment
•Coupler (e.g. OASIS): 
¾ best solution to couple independently developed codes

• The OASIS coupler :
• Coarse to fine grid remapping: subgrid

 
variability with 2nd

 
order 

remapping or SUBGRID (1st

 
order Taylor expansion)

• Non-matching sea-land masks: 
• DESTAREA: local flux conservation but unrealistic flux values
• FRACAREA: no local flux conservation but realistic flux values
• Global conservation can be artificially imposed

• Vector interpolation: need to project components in a cartesian
 referential before interpolation.

Part II -
 

About technical coupling software
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The end
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Use of SUBGRID transformation in practice:
aa T, Q

i
o

i
o T , Q

method 1

method 2

To

Qa
Ta

Qo
J-2 J-1 J

ocean

atmos

To

Ta
T

Qa

∂
∂
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volume of arctic ice Mkm3

Method 1: 
keep and use To

 

-Ta

 

from J-2
Qo

 

=
 

Qa(Ta)+
 

δQa

 

/δT|Ta

 

x ( To

 

-
 

Ta

 

)i i

i

Method 2: 
send back Ta and use To

 

-
 

Ta

 

from J-1

Qo

 

=
 

Qa(Ta)+
 

δQa

 

/δT|Ta

 

x ( To

 

-
 

Ta

 

)i i

i
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Part II -
 

About technical coupling software

¾ communication library (MPI message passing) linked to the models

II.2.2 The OASIS coupler: data exchange

+ I/O functionality (GFDL mpp_io
 

library)
¾ switch between coupled and forced mode

pe1

pe2

model1

file
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OASIS4: Parallel communication including
repartitioning

 
and                parallel interpolation

pe1

pe2

model1
pe1

pe2

pe3

pe1

pe2

model1 pe1

pe2

pe3

model2

T
T
T

model2

same grids, different decompositions different grids, different decompositions

Oasis3

pe1

pe2

model1

Oasis3
pe1

pe2

pe3

model2
OASIS3: Parallel communication 
between parallel models  and mono-

 process interpolation instance(s)
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Use of SUBGRID transformation in practice:
aa T, Q

i
o

i
o T , Q

method 2

method 3

To

Qa
Ta

Qo
J-2 J-1 J

ocean

atmos

To

Ta
T

Qa

∂
∂

method 1
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volume of arctic ice Mkm3

Method 2: 
keep and use To

 

-Ta

 

from J-2
Qo

 

=
 

Qa(Ta)+
 

δQa

 

/δT|Ta

 

x ( To

 

-
 

Ta

 

)i i

i

Method 1: 
send back Ta and use To from J-1 , Ta

 

from J-2
Qo

 

=
 

Qa(Ta)+
 

δQa

 

/δT|Ta

 

x ( To

 

-
 

Ta

 

)i i

i

Method 3: 
send back Ta and use To

 

-
 

Ta

 

from J-1

Qo

 

=
 

Qa(Ta)+
 

δQa

 

/δT|Ta

 

x ( To

 

-
 

Ta

 

)i i

i
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Remapping algorithms available in OASIS 
(Los Alamos SCRIP library)

Part B -
 

about ocean-atmosphere technical coupling software

Actual limitations:
• borders are linear in (lat,lon) between corners 
(for intersection calculation)

¾ uses Lambert equivalent azimuthal
projection near the pole

• sin(lat) linear function of in lon
 

(for line integral 
calculation); fractional error is < .001 further 
than 10 deg from the pole, and only ~0.1 within 
about 1 deg of it, for the ORCA1 example (for 
most gridcells

 
the two measures of gridcell

 
area 

agree to < 5%, but for two gridcells
 

they're out 
by 10%, and for another two they're out by 50%.
¾ need to use a projection for line integral 
calculation too

•

 

exact calculation is not possible as "real shape" 
of the borders are not known

¾ to ensure conservation, need to normalize 
by true area of the cells (i.e. as considered 
by the models themselves)
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Part B -
 

about ocean-atmosphere technical coupling software

• Problem with 1st

 

order conservative remapping
(low to high resolution) 

• Solution 1:  use 2nd

 

order conservative remapping: 

 ] wf
)(cos

1  wf  w[f   F 321

N

1n nk
n

nk
n

nkkk lonlatlat ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+Σ=
=

• Solution 2:  use SUBGRID transformation: 

Solar type 

Non-solar type 
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1- Rainfall + int. energy
2- Snowfall + int. energy
3- Incoming  solar radiat.
4- Solar zenith angle
5- Fraction of diffuse

solar radiation
6- Downward infrared 

radiation
7- Sensitivity of atmos 

temp. & humidity to
surf. fluxes

1*- Sensible heat flux
2*- Surf. emissivity 
3*- Albedo, direct
4*- Albedo, diffuse
5*- Surf. radiative temp.
6*- Evaporation + int.   

energy [+ Qlat ]
7*- Wind stress
8- Subgrid fractions

1- Surface pressure
2-4 Air temperature, humidity and wind
5- Wind module
6- Height of these 4 variables

1*- ρCd
2*- ρCe
3*- ρCh

1*- Surf. Temp
2*- Surf. Roughness
3*- Displacement height
4x- Surface velocity

1 2

3

4 5

Ocean surface module

Surface layer turbulence

Sea ice model (wave model)

+3
4

1

2

Atmosphere model

Land surface model

1- SST
2- Sea ice extent
3- Sea ice thickness

Data from previous run
[        unused ]1

1-2 Temp./Salinity at sea-ice base
3- Sea surface temperature
4- Surf. radiative temp.
5- Surface ocean current
6- Sea surface salinity
7- Surface height
8- Absorbed solar radiation 

(in first oceanic layer)

7

Data from previous run

Stand alone (forced AGCM)
Part I -

 
On a revised ocean-atmosphere physical coupling interface
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