

John Eyre

Met Office, UK

An introduction to GPS radio occultation and its use in NWP

- Radio occultation (RO) introduction
- Variational data assimilation introduction
- Assimilation options for RO data
- Some issues for this Workshop

GPS – the source data

The Global Positioning System (GPS)

- multi-purpose applications in positioning, navigation, surveying, ...
- nominal GPS network = 24 satellites
- near polar orbit height ~20000 km
- allows high-accuracy positioning of low Earth orbiters (LEOs)
- source of refracted radio signals for radio occultation

Geometry of a radio occultation measurement

An occultation

A sounding from 60 km to the surface takes ~60s

Atmospheric refraction: the physics

Refractivity gradients caused by gradients in:

- density (pressure and temperature)
- water vapour
- electron density
- (liquid water)

$$N = \kappa_1 p / T + \kappa_2 e / T^2 + \kappa_3 n_e / f^2 + \kappa_4 W$$

"dry" "moist" ionosphere "scattering"

```
N = refractivity = (n - 1) \times 10^6 n = refractive index

p = pressure T = temperature
```

e = water vapour pressure $n_e = electron density$

f = frequency W = liquid water density

From bending angle to density

$$\ln(n(a)) = \frac{1}{\pi} \int_a^{\infty} \frac{\alpha(a')}{\sqrt{a'^2 - a^2}} da'$$

Refractive index

$$N = (n-1) \times 10^6 = \kappa_1 \frac{p}{T} + \kappa_2 \frac{r}{r^2}$$

Refractivity

Features of RO measurements

- globally distributed
- temperature in stratosphere and upper troposphere, and ...
- humidity in lower troposphere
- high vertical resolution: 0.5 1 km
- low horizontal resolution: ~ 200 km
- high accuracy:
 - random errors <1K
 - systematic errors <0.2K to be demonstrated in practice
- "all-weather"
- relatively inexpensive
- receivers x transmitters → space/time sampling

Radio occultation missions

Past:

• GPS/MET: 1995-7 1 selected periods only

Present:

CHAMP: 2000- 1 continuous since 2001, nrt since 2006

GRACE-A: 2002- 1 continuous since 2003, nrt since 2006

COSMIC: 2006- 6 quasi-operational demonstration

• GRAS: 2006- 1 operational 2008

Future:

• ???

GPS/MET – early results

Comparison of GPS/MET Retrievals with ECMWF Summer AS-off Period

Mean, standard error, and standard deviation of temperature difference with ECMWF (K)

JPL: Kursinski, Hajj, Bertiger, Leroy, Romans, Schofield, et al. (6 December 1995)

COSMIC

CHAMP

© Crown copyright 2007

COSMIC data coverage in 6 hours

... compared with sondes

30°S

Colours: lowest processed data in profile / km

© Crown copyright 2007

Variational data assimilation

Minimize:

```
J[x] = ½ (x-x<sup>b</sup>)<sup>T</sup>B<sup>-1</sup> (x-x<sup>b</sup>) + ½ (y<sup>o</sup>-H[x])<sup>T</sup> (E+F)<sup>-1</sup> (y<sup>o</sup>-H[x])

x NWP model state
x<sup>b</sup> background estimate of x (short-range forecast)
B its error covariance

y<sup>o</sup> vector of measurements
H[...] "observation operator" or "forward model"
mapping state x into "measurement space"
E error covariance of measurements
F error covariance of forward model.
```

$$\nabla_{x} J[x]^{T} = B^{-1} (x-x^{b}) - \nabla_{x} H[x]^{T} (E+F)^{-1} (y^{o}-H(x)) = 0$$

Assimilating observations into a NWP model

Assimilation options for RO data

Options:

- (1) assimilate retrieved profiles of temperature and humidity
- (2) assimilate retrieved profile of refractivity, N(z)
- (3) assimilate measured bending angles, $\alpha(a)$, directly

Special problems with RO data:

- non-separability of temperature and humidity
 - addressed by (2) and (3)
- limited horizontal resolution / problems of horizontal gradients
 - partially addressed by (3)

Forward modelling for RO data

Forward problem:

3D fields of T,q temperature and humidity
↓
3D field of N refractivity

REFRACTION MODEL

α(a) refracted angle as a function of impact parameter

2D fast forward model of refraction in plane of occultation

RO forward model: accuracy

Comparisons against a 3D ray tracer for simulations in the domain of the Met Office mesoscale model. 160 cases.

Healy and Eyre, 2003.

Largest source of error - using impact parameter to derive tangent point height.

Forecast errors mapped into bending angle space

Diagonal of $\nabla_x H[x] . B. \nabla_x H[x]^T$

Significantly larger than the forward model errors

Healy and Eyre, 2003.

Information content of RO data

- Information is always relative relative to what you already know, the "prior" information
- For NWP, the information content of an observation depends on the accuracy of the "background" information from a shortrange forecast:

$$A^{-1} = B^{-1} + \nabla_x H[x]^T \cdot (E+F)^{-1} \cdot \nabla_x H[x]$$

retrieval = background + measurement "accuracy" "accuracy"

Information content: RO and IASI

Collard and Healy, QJRMS 2003

Summary

Radio occultation measurements:

- sensitive to vertical gradients of atmospheric refractivity
- \rightarrow and hence to atmospheric profiles of temperature and humidity
- used to study atmospheres of other planets since mid-1960s
- powerful new technique for sounding the Earth's atmosphere with high vertical resolution and accuracy
- great potential for NWP and climate monitoring
- temperature and humidity effects cannot be separated unambiguously, but ...
- variational data assimilation allows optimal exploitation in NWP

Some issues for this Workshop

NWP

- Early impacts very good
- What is limiting impact? relative biases?

Climate

Stability – truly self-calibrating?

Other applications

- PBL information NWP and other applications
- Reflected signals

Future systems

- How many receivers x transmitters needed? OSSEs?
- How do we ensure follow-on missions?

