Variational Ensemble Kalman Filtering on Parallel Computers

Idrissa S. Amour, Harri Auvinen, Heikki Haario, Tuomo Kauranne

Lappeenranta University of Technology

13th ECMWF Workshop on the Use of High Performance Computing in Meteorology November 6, 2008

A 3 b

1 Data Assimilation Methods

- 3D Variational Assimilation (3D-Var)
- 4D Variational Assimilation (4D-Var)
- The Extended Kalman Filter (EKF)
- The Variational Kalman Filter (VKF)
- 2 A Variational Ensemble Kalman Filter
 - Ensemble Kalman Filters (EnKF)
 - The Variational Ensemble Kalman Filter (VEnKF)
- 3 Computational Results
 - The Lorenz '95 model
 - Computational Results

Conclusions

 Data Assimilation Methods
 3D Variational Assimilation (3D-Var)

 A Variational Ensemble Kalman Filter
 4D Variational Assimilation (3D-Var)

 Computational Results
 The Extended Kalman Filter (EKF)

 Conclusions
 The Variational Kalman Filter (VKF)

Overview

1 Data Assimilation Methods

- 3D Variational Assimilation (3D-Var)
- 4D Variational Assimilation (4D-Var)
- The Extended Kalman Filter (EKF)
- The Variational Kalman Filter (VKF)
- 2 A Variational Ensemble Kalman Filter
 - Ensemble Kalman Filters (EnKF)
 - The Variational Ensemble Kalman Filter (VEnKF)
- 3 Computational Results
 - The Lorenz '95 model
 - Computational Results

4 Conclusions

3D Variational Assimilation (3D-Var) 4D Variational Assimilation (4D-Var) The Extended Kalman Filter (EKF) The Variational Kalman Filter (VKF)

(日) (同) (三) (三)

э

3D Variational Assimilation (3D-Var)

Algorithm

Minimize

$$\begin{split} J(\mathbf{x_0}) &= J_b + J_o \\ &= \frac{1}{2} (\mathbf{x_b} - \mathbf{x_0})^{\mathrm{T}} \mathbf{S}_{apr}^{-1} (\mathbf{x_b} - \mathbf{x_0}) \\ &+ \frac{1}{2} (\mathbf{y}(0) - \mathcal{K}_t(\mathbf{x_0}))^{\mathrm{T}} \mathbf{Se}_t^{-1} (\mathbf{y}(0) - \mathcal{K}_t(\mathbf{x_0})), \end{split}$$

Idrissa S. Amour, Harri Auvinen, Heikki Haario, Tuomo Kauranne Variational Ensemble Kalman Filtering on Parallel Computers

3D Variational Assimilation (3D-Var) 4D Variational Assimilation (4D-Var) The Extended Kalman Filter (EKF) The Variational Kalman Filter (VKF)

/□ ▶ < 글 ▶ < 글

3D Variational Assimilation (3D-Var)

Where

- **x**₀ is the analysis at time 0
- x_b is the background at time 0
- y is the vector of observations at time 0
- **S**_{apr} is the background error covariance matrix
- **Se**_t is the observation error covariance matrix
- \mathcal{K}_t is the nonlinear observation operator

3D Variational Assimilation (3D-Var) 4D Variational Assimilation (4D-Var) The Extended Kalman Filter (EKF) The Variational Kalman Filter (VKF)

- ∢ ≣ ▶

3D Variational Assimilation (3D-Var)

- 3D-Var is computed at a snapshot in time where all observations are assumed contemporaneous
- 3D-Var does not take into account atmospheric dynamics, by which
- It does not depend on the weather model

3D Variational Assimilation (3D-Var) 4D Variational Assimilation (4D-Var) The Extended Kalman Filter (EKF) The Variational Kalman Filter (VKF)

(日) (同) (三) (三)

э

4D Variational Assimilation (4D-Var)

Algorithm

Minimize

$$\begin{aligned} J(\mathbf{x_0}) &= J_b + J_o \\ &= \frac{1}{2} (\mathbf{x_b} - \mathbf{x_0})^{\mathrm{T}} \mathbf{S}_{apr}^{-1} (\mathbf{x_b} - \mathbf{x_0}) \\ &+ \frac{1}{2} \sum_{t=0}^{T} (\mathbf{y}(t) - \mathcal{K}_t(\mathcal{M}_t(\mathbf{x_0})))^{\mathrm{T}} \mathbf{Se}_t^{-1} (\mathbf{y}(t) - \mathcal{K}_t(\mathcal{M}_t(\mathbf{x_0}))), \end{aligned}$$

3D Variational Assimilation (3D-Var) 4D Variational Assimilation (4D-Var) The Extended Kalman Filter (EKF) The Variational Kalman Filter (VKF)

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

4D Variational Assimilation (4D-Var)

Where

- $\bullet \ x_0$ is the analysis at the beginning of the assimilation window
- $\bullet \ x_b$ is the background at the beginning of the assimilation window
- **S**_{apr} is the background error covariance matrix
- Se_t is the observation error covariance matrix
- \mathcal{M}_t is the nonlinear weather model

3D Variational Assimilation (3D-Var) 4D Variational Assimilation (4D-Var) The Extended Kalman Filter (EKF) The Variational Kalman Filter (VKF)

< ∃ >

4D Variational Assimilation (4D-Var)

- The model is assumed to be perfect
- Model integrations are carried out forward in time with the nonlinear model and the tangent linear model, and backward in time with the corresponding adjoint model
- Minimization is sequential
- The weather model can run in parallel

3D Variational Assimilation (3D-Var) 4D Variational Assimilation (4D-Var) **The Extended Kalman Filter (EKF)** The Variational Kalman Filter (VKF)

(日) (同) (三) (三)

э

The Extended Kalman Filter (EKF)

Algorithm

Iterate in time

$$\begin{split} \mathbf{x}_{a}(t) &= \mathcal{M}_{t}(\mathbf{x}_{est}(t-1)) \\ \mathbf{S}_{a}(t) &= \mathbf{M}_{t}\mathbf{S}_{est}(t-1)\mathbf{M}_{t}^{\mathrm{T}} + \mathbf{S}\mathbf{E}_{t} \\ \mathbf{G}_{t} &= \mathbf{S}_{a}(t)\mathbf{K}_{t}^{\mathrm{T}}(\mathbf{K}_{t}\mathbf{S}_{a}(t)\mathbf{K}_{t}^{\mathrm{T}} + \mathbf{S}\mathbf{e}_{t})^{-1} \\ \mathbf{x}_{est}(t) &= \mathbf{x}_{a}(t) + \mathbf{G}_{t}(\mathbf{y}(t) - \mathcal{K}_{t}(\mathbf{x}_{a}(t))) \\ \mathbf{S}_{est}(t) &= \mathbf{S}_{a}(t) - \mathbf{G}_{t}\mathbf{K}_{t}\mathbf{S}_{a}(t), \end{split}$$

Idrissa S. Amour, Harri Auvinen, Heikki Haario, Tuomo Kauranne Variational Ensemble Kalman Filtering on Parallel Computers

3D Variational Assimilation (3D-Var) 4D Variational Assimilation (4D-Var) **The Extended Kalman Filter (EKF)** The Variational Kalman Filter (VKF)

同 ト イ ヨ ト イ ヨ ト

The Extended Kalman Filter (EKF)

Where

- x_a is the prediction
- x_{est} is the analysis
- **S**_a is the prediction error covariance matrix
- **S**_{est} is the analysis error covariance matrix
- **SE**_t is the model error covariance matrix
- **G**_t is the Kalman gain matrix

3D Variational Assimilation (3D-Var) 4D Variational Assimilation (4D-Var) **The Extended Kalman Filter (EKF)** The Variational Kalman Filter (VKF)

・ロト ・同ト ・ヨト ・ヨト

The Extended Kalman Filter (EKF)

- The model is not assumed to be perfect
- Model integrations are carried out forward in time with the nonlinear model for the state estimate and
- Forward and backward in time with the tangent linear model and the adjoint model, respectively, for updating the prediction error covariance matrix
- There is no minimization, just matrix products and inversions
- Computational cost of EKF is prohibitive, because S_a is a huge full matrix

3D Variational Assimilation (3D-Var) 4D Variational Assimilation (4D-Var) The Extended Kalman Filter (EKF) **The Variational Kalman Filter (VKF)**

(日) (同) (三) (三)

-

The Variational Kalman Filter (VKF)

Algorithm

Iterate in time

- **Step 0:** Select an initial guess $\mathbf{x}_{est}(0)$ and a covariance $\mathbf{S}_{est}(0)$, and set t = 1.
- **Step 1:** Compute the evolution model state estimate and the prior covariance estimate: (i) Compute $\mathbf{x}_a(t) = \mathcal{M}_t(\mathbf{x}_{est}(t-1));$ (ii) Approximate $(\mathbf{S}_a(t))^{-1} = (\mathbf{M}_t \mathbf{S}_{est}(t-1)\mathbf{M}_t^{\mathrm{T}} + \mathbf{SE}_t)^{-1}$ by the LBFGS method;

 Data Assimilation Methods
 3D Variational Assimilation (3D-Var)

 A Variational Ensemble Kalman Filter
 4D Variational Assimilation (3D-Var)

 Computational Results
 The Extended Kalman Filter (EKF)

 Conclusions
 The Variational Kalman Filter (KKF)

Algorithm

Step 2: Compute the Variational Kalman filter state estimate and the posterior covariance estimate: (i) Minimize

$$\ell(\mathbf{x}_{est}(t)|\mathbf{y}) = (\mathbf{x}_{a}(t) - \mathbf{x}_{est}(t))^{\mathrm{T}}(\mathbf{S}_{a}(t))^{-1}(\mathbf{x}_{a}(t) - \mathbf{x}_{est}(t)) +$$

 $(\mathbf{y} - \mathcal{K}_t(\mathbf{x}_{est}(t)))^{\mathrm{T}}(\mathbf{Se}_t)^{-1}(\mathbf{y} - \mathcal{K}_t(\mathbf{x}_{est}(t)))$; by the LBFGS method;

(ii) Store the result of the minimization as a VKF estimate x_{est}(t);
(iii) Store the limited memory approximation to S_{est}(t);

Step 3: Update t := t + 1 and return to Step 1.

・ロト ・同ト ・ヨト ・ヨト

3D Variational Assimilation (3D-Var) 4D Variational Assimilation (4D-Var) The Extended Kalman Filter (EKF) **The Variational Kalman Filter (VKF)**

・ロト ・同ト ・ヨト ・ヨト

The Variational Kalman Filter (VKF)

Where

- Step 1(ii) is carried out with an auxiliary minimization that has a trivial solution but a random initial guess, and thereby generates a non-trivial minimization sequence
- S_a(t) and S_{est}(t) are kept in vector format, as a sum of a diagonal or sparse background S_{apr} and a low rank dynamical component Š_a(t) that
- Is obtained from the Hessian update formula of the Limited Memory BFGS iteration
- The Kalman gain matrix is not needed

3D Variational Assimilation (3D-Var) 4D Variational Assimilation (4D-Var) The Extended Kalman Filter (EKF) **The Variational Kalman Filter (VKF)**

A (1) > A (2) > A

The Variational Kalman Filter (VKF)

- The model is not assumed to be perfect
- Model integrations are carried out forward in time with the nonlinear model for the state estimate and
- Forward and backward in time for updating the prediction error covariance matrix
- There are no matrix inversions, just matrix products and minimizations
- Computational cost of VKF is similar to 4D-Var
- Minimizations are sequantial
- Accuracy of analyses similar to EKF

Ensemble Kalman Filters (EnKF) The Variational Ensemble Kalman Filter (VEnKF)

→ Ξ →

Overview

Data Assimilation Methods

- 3D Variational Assimilation (3D-Var)
- 4D Variational Assimilation (4D-Var)
- The Extended Kalman Filter (EKF)
- The Variational Kalman Filter (VKF)
- 2 A Variational Ensemble Kalman Filter
 - Ensemble Kalman Filters (EnKF)
 - The Variational Ensemble Kalman Filter (VEnKF)

3 Computational Results

- The Lorenz '95 model
- Computational Results

4 Conclusions

Ensemble Kalman Filters (EnKF) The Variational Ensemble Kalman Filter (VEnKF)

/□ ▶ < 글 ▶ < 글

Ensemble Kalman Filters (EnKF)

- Ensemble Kalman Filters are generally simpler to program than variational assimilation methods or EKF, because
- EnKF codes are based on just the non-linear model and do not require tangent linear or adjoint codes, but they
- Tend to suffer from slow convergence and therefore inaccurate analyses
- Often underestimate analysis error covariance

Ensemble Kalman Filters (EnKF) The Variational Ensemble Kalman Filter (VEnKF)

・ 同 ト ・ ヨ ト ・ ヨ ト

Ensemble Kalman Filters (EnKF)

- Ensemble Kalman filters often base analysis error covariance on **bred vectors**, *i.e.* the difference between ensemble members and the background, or the ensemble mean
- One family of EnKF methods is based on perturbed observations, while
- Another family uses explicit linear transforms to build up the ensemble

イロト イポト イヨト イヨト

The Variational Ensemble Kalman Filter (VEnKF)

- The goal of VEnkF is to produce an Ensemble Kalman filter that
- Will not require a tangent linear or adjoint code
- But will converge faster and thereby produce more accurate analyses than EnKF methods in general
- VEnKF is based on the 4D-LETKF method by Hunt, Kostelic and Szunyogh
- It incorporates certain features from VKF, in particular
- It uses an analysis produced by a 3D-Var minimization with LBFGS as the vector to base bred vectors on, and not the ensemble mean or background

Ensemble Kalman Filters (EnKF) The Variational Ensemble Kalman Filter (VEnKF)

/□ ▶ < 글 ▶ < 글

The Variational Ensemble Kalman Filter (VEnKF)

Properties

The cost function to be minimized is a "dual 3D-Var" cost function that optimizes the weight of each ensemble member in the analysis, using the LBFGS method:

$$J(\mathbf{w}) = eta(n-1)\mathbf{w}^{\mathrm{T}}\mathbf{w} + (1-eta) imes$$

$$(y_{apr} - \mathcal{K}(\mathbf{x}_{a}^{(i)}(t)) - Y\mathbf{w})^{\mathrm{T}}(\mathbf{Se}_{t})^{-1}(y_{apr} - \mathcal{K}(\mathbf{x}_{a}^{(i)}(t)) - Y\mathbf{w})$$

Ensemble Kalman Filters (EnKF) The Variational Ensemble Kalman Filter (VEnKF)

伺 ト く ヨ ト く ヨ ト

The Variational Ensemble Kalman Filter (VEnKF)

Where

- y_{apr} is the synthetic observation vector of the prior y_{apr} = K(x_{apr}(t))
- w is the vector of the weights $w^{(i)}$ of each ensemble member $\mathbf{x}_{a}^{(i)}(t)$
- Y is the matrix of synthetic observations of each ensemble member Y⁽ⁱ⁾ = K(x⁽ⁱ⁾_a(t))
- n is the ensemble size
- β is an empirical weight factor between 0 and 1

Ensemble Kalman Filters (EnKF) The Variational Ensemble Kalman Filter (VEnKF)

The Variational Ensemble Kalman Filter (VEnKF)

Algorithm

Iterate in time

Step 0: Initialize the background state $\mathbf{x}_{apr}(0)$ and the ensemble members $\mathbf{x}_{est}^{(i)}(0)$ for i = 1, ..., nStep 1: Compute $\mathbf{x}_a^{(i)}(t) = \mathcal{M}_t(\mathbf{x}_{est}^{(i)}(t-1))$ and $\mathbf{x}_{apr}(t) = \mathcal{M}_t(\mathbf{x}_{apr}(t-1));$ Step 2: Perturb the members $\mathbf{x}_a^{(i)}(t)$ and assemble them in matrix Ψ ; Step 3: Compute the matrix $X_a(t) : X_a^{(i)}(t) = \mathbf{x}_{apr}(t) - \Psi^{(i)};$ Step 4: Compute the matrix

$$Y_{\mathsf{a}}(t): Y^{(i)}_{\mathsf{a}}(t) = \mathcal{K}(\mathbf{x}^{(i)}_{\mathsf{a}}(t)) - \mathcal{K}(\mathbf{x}_{\mathsf{apr}}(t));$$

Ensemble Kalman Filters (EnKF) The Variational Ensemble Kalman Filter (VEnKF)

伺 ト く ヨ ト く ヨ ト

The Variational Ensemble Kalman Filter (VEnKF)

Algorithm

Step 5: Minimize the dual 3D-Var cost function $J(\mathbf{w})$ using the LBFGS method. **Step 6:** Compute the analysis $\mathbf{x}_{apr}(t) = \mathbf{x}_{apr}(t) + X_a(t)\mathbf{w}$ **Step 7:** Compute the background ensemble $X_{est}(t) : X_{est}^{(i)}(t) = X_a^{(i)}(t) + X_a(t)\mathbf{w}$ **Step 8:** Update t := t + 1 and return to Step 1.

The Lorenz '95 model Computational Results

Overview

Data Assimilation Methods

- 3D Variational Assimilation (3D-Var)
- 4D Variational Assimilation (4D-Var)
- The Extended Kalman Filter (EKF)
- The Variational Kalman Filter (VKF)
- 2 A Variational Ensemble Kalman Filter
 - Ensemble Kalman Filters (EnKF)
 - The Variational Ensemble Kalman Filter (VEnKF)

3 Computational Results

- The Lorenz '95 model
- Computational Results

• Conclusions

- ₹ 🖹 🕨

The Lorenz '95 model Computational Results

The Lorenz '95 Model

Properties

- The Lorenz '95 model is computationally light and represents an analogue of mid-latitude atmospheric dynamics.
- The variables of the model can be thought of as representing some atmospheric quantity on a single latitude circle.
- The model consists of a system of coupled ordinary differential equations

$$\frac{\partial c_i}{\partial t} = c_{i-1}c_{i+1} - c_{i-2}c_{i-1} - c_i + F,$$

・ロト ・同ト ・ヨト ・ヨト

• Grid points range between i = 1, 2, ..., k and F is a constant.

The Lorenz '95 model Computational Results

The Lorenz '95 Model

Where

- The domain is set to be cyclic, so that c₋₁ = c_{k-1}, c₀ = c_k and c_{k+1} = c₁.
- The parameter values used in the simulation of the system were selected as follows:
- the number of grid points k = 40,
- the climatological standard deviation of the model state, $\sigma_{\rm clim} \approx 3.64,$
- the observation noise matrix $\mathbf{Se}_t = 0.15\sigma_{clim}\mathbf{I}$ and
- prediction error covariance $SE_t = 0.5\sigma_{clim}I$.

・ロト ・同ト ・ヨト ・ヨト

The Lorenz '95 model Computational Results

The Lorenz '95 Model

Properties

- The system was assimilated using each of EKF, VKF and VEnKF.
- In order to compare the quality of analyses produced by all three methods, we compute the following forecast statistics at every 8th observation.
- Take $j \in \mathcal{I} := \{8i \mid i = 1, 2, \dots, 100\}$ and define

$$[\mathbf{forcast_error}_j]_i = \frac{1}{40} \|\mathcal{M}_{4i}(\mathbf{x}_j^{est}) - \mathbf{x}_{j+4i}^{true}\|^2, \quad i = 1, \dots, 20$$

- 4 同 2 4 日 2 4 日 2 4

The Lorenz '95 model Computational Results

The Lorenz '95 Model

Where

- *M_n* denotes a forward integration of the model by n time steps with the RK4 method.
- This vector gives a measure of forecast accuracy given by the respective filter estimate up to 80 time steps, or 10 days out.
- This allows us to define the forecast skill vector

$$[\textbf{forecast_skill}]_{i} = \frac{1}{\sigma_{\text{clim}}} \sqrt{\frac{1}{100} \sum_{j \in \mathcal{I}} [\textbf{forecast_error}_{j}]_{i}},$$

i=1,...,20,

The Lorenz '95 model Computational Results

Computational Results

Idrissa S. Amour, Harri Auvinen, Heikki Haario, Tuomo Kauranne Variational Ensemble Kalman Filtering on Parallel Computers

・ 同 ト ・ ヨ ト ・ ヨ

The Lorenz '95 model Computational Results

Computational Results

Idrissa S. Amour, Harri Auvinen, Heikki Haario, Tuomo Kauranne Variational Ensemble Kalman Filtering on Parallel Computers

- **→** → **→**

э

The Lorenz '95 model Computational Results

Computational Results

Idrissa S. Amour, Harri Auvinen, Heikki Haario, Tuomo Kauranne Variational Ensemble Kalman Filtering on Parallel Computers

The Lorenz '95 model Computational Results

Computational Results

Idrissa S. Amour, Harri Auvinen, Heikki Haario, Tuomo Kauranne Variational Ensemble Kalman Filtering on Parallel Computers

э

The Lorenz '95 model Computational Results

Computational Results

Idrissa S. Amour, Harri Auvinen, Heikki Haario, Tuomo Kauranne Variational Ensemble Kalman Filtering on Parallel Computers

Overview

Data Assimilation Methods

- 3D Variational Assimilation (3D-Var)
- 4D Variational Assimilation (4D-Var)
- The Extended Kalman Filter (EKF)
- The Variational Kalman Filter (VKF)
- 2 A Variational Ensemble Kalman Filter
 - Ensemble Kalman Filters (EnKF)
 - The Variational Ensemble Kalman Filter (VEnKF)
- 3 Computational Results
 - The Lorenz '95 model
 - Computational Results

4 Conclusions

★ ∃ →

Conclusions

- VKF performs as well as EKF, with a computational cost comparable to 4D-Var, on Lorentz '95
- VEnKF is less good than EKF or VKF in forecast skill, but can be run without an adjoint code
- VEnKF is embarrassingly parallel
- Another version of VKF also parallelizes well, but has a higher serial complexity
- VKF and VEnKF are attractive candidates to replace 4D-Var and Optimum Interpolation, respectively, in operational weather data assimilation

伺 と く ヨ と く ヨ と

Thank You!

Idrissa S. Amour, Harri Auvinen, Heikki Haario, Tuomo Kauranne Variational Ensemble Kalman Filtering on Parallel Computers

-