
Parallel programming
in Fortran with Coarrays

John Reid, ISO Fortran Convener,
JKR Associates and

Rutherford Appleton Laboratory

The ISO Fortran Committee has decided to
include co-arrays in Fortran 2008.

Aim of this talk: introduce co-arrays and
explain why we believe that they will lead
to easier development of parallel programs,
faster execution times, and better
maintainability.

RAPS Workshop,
ECMWF, Reading,
5 November 2008.

Design objectives

Coarrays are the brain-child of Bob Numrich
(Minnesota Supercomputing Institute, formerly
Cray).

The original design objectives were for

A simple extension to Fortran

Small demands on the implementors

Retain optimization between synchronizations

Make remote references apparent

Provide scope for optimization of
communication

A subset has been implemented by Cray for some
ten years.

Coarrays have recently been added to the g95
compiler.

2

Summary of coarray model

SPMD – Single Program, Multiple Data

Replicated to a number of images (probably as
executables)

Number of images fixed during execution

Each image has its own set of variables

Coarrays are like ordinary variables but have
second set of subscripts in [] for access
between images

Images mostly execute asynchronously

Synchronization: sync all, sync images,
sync memory, allocate, deallocate,
critical construct

Intrinsics: this_image, num_images,
co_lbound, co_ubound, image_index.

Full summary: Reid (2008)

3

Examples of coarray syntax

real :: r[*], s[0:*] ! Scalar co-arrays
real :: x(n)[*] ! Array co-array
type(u) :: u2(m,n)[np,*]
! Co-arrays always have assumed
! co-size (equal to number of images)

real :: t ! Local
integer p, q, index(n) ! variables

:
t = s[p]
x(:) = x(:)[p]
! Reference without [] is to local part
x(:)[p] = x(:)
u2(i,j)%b(:) = u2(i,j)[p,q]%b(:)

4

Implementation model

Usually, each image resides on one processor.

However, several images may share a processor
(e.g. for debugging) and one image may execute
on a cluster (e.g. with OpenMP).

A coarray has the same set of bounds on all
images, so the compiler may arrange that it
occupies the same set of addresses within each
image.

On a shared-memory machine, a coarray may be
implemented as a single large array.

On any machine, a coarray may be implemented
so that each image can calculate the memory
address of an element on another image.

5

Synchronization

With a few exceptions, the images execute
asynchronously. If syncs are needed, the user
supplies them explicitly.

Barrier on all images
sync all

Wait for others
sync images(image-set)

For hand coding, e.g. spin loops
sync memory

Critical construct
critical

p[6] = p[6] + 1
:

end critical
Limits execution to one image at a time.

6

Non-coarray dummy arguments

A coarray may be associated as an actual
argument with a non-coarray dummy argument
(nothing special about this).

A coindexed object (with square brackets) may be
associated as an actual argument with a non-
corray dummy argument. Copy-in copy-out is to
be expected.

These properties are very important for using
existing code.

7

Dynamic coarrays

Only dynamic form: the allocatable coarray.

All images synchronize at an allocate or
deallocate statement so that they can all
perform their allocations and deallocations in the
same order. The bounds must not vary between
images.

Automatic arrays or array-valued functions would
require automatic synchronization, which would
be awkward.

An allocatable coarray may be a component of a
structure provided the structure and all its
ancestors are scalars that are neither pointers nor
coarrays.

8

Coarray dummy arguments

A dummy argument may be a coarray. It may be
of explicit shape, assumed size, assumed shape,
or allocatable:
subroutine subr(n,w,x,y,z)

integer :: n
real :: w(n)[n,*] ! Explicit shape
real :: x(n,*)[*] ! Assumed size
real :: y(:,:)[*] ! Assumed shape
real, allocatable :: z(:)[:,:]

Where the bounds or cobounds are declared, there
is no requirement for consistency between
images. The local values are used to interpret a
remote reference. Different images may be
working independently.

There are rules to ensure that copy-in copy-out of
a coarray is never needed.

9

Co-Arrays and SAVE

Unless allocatable or a dummy argument, a co-
array must be given the SAVE attribute.

This is to avoid the need for synchronization
when co-arrays go out of scope on return from a
procedure.

10

Structure components

A coarray may be of a derived type with
allocatable or pointer components.

Pointers must have targets in their own image:

q => z[i]%p ! Not allowed
allocate(z[i]%p) ! Not allowed

Provides a simple but powerful mechanism for
cases where the size varies from image to image,
avoiding loss of optimization.

11

Optimization

Most of the time, the compiler can optimize as if
the image is on its own, using its temporary
storage such as cache, registers, etc.

There is no coherency requirement except on
synchronization.

It also has scope to optimize communication.

12

Main changes since the 1998 draft

cosubscripts limited to scalars

The critical section replaces the intrinsic
subroutines, start_critical and
end_critical

Rank plus corank limit made 15.

coarrays of a type with allocatable
components

Allocatable coarray dummy arguments

No parallel i/o features

13

Recent changes

A substantial reduction was proposed by the US
at the February meeting and accepted.

It is to separate parallel programming features
into a ‘core’ set that remain in Fortran 2008 while
the following features are moved into a separate
Technical Report on ‘Enhanced Parallel
Computing Facilities’:

1. The collective intrinsic subroutines.

2. Teams and features that require teams.

3. The notify and query statements.

4. File connected on more than one image,
unless preconnected to the unit specified by
output_unit or error_unit.

It was also decided to remove hyphens from the
words ‘co-array’, ‘co-rank’, etc., (cf ‘cosine’ and
‘cotangent’).

14

Comparison with MPI (i)

MPI is the de-facto standard but is awkward to
program. Here is an example due to Jef Dawson
of AHPCRC-NCSI.

With coarrays, to send the first m elements of an
array from one image to another:
real :: a(n)[*]
me=this_image()
if (me.eq.2) a(1:m)=a(1:m)[1]
sync_all

and with MPI:
real :: a(n)
call mpi_comm_rank(mpi_comm_world, &

myrank, errcode)
if (myrank.eq.0) call mpi_send &

(a,m,mpi_float,1,tag1, &
mpi_comm_world,errcode)

if (myrank.eq.1) call mpi_recv &
(a,m,mpi_float,0,tag1, &
mpi_comm_world,status,errcode)

15

Comparison with MPI (ii)

Experience on the Cray vector computers with the
Cray compiler suggests that there is a
performance advantage as the number of
processes increases.

For example, Dawson (2004) reports speed-up of
60 on 64 processors of the Cray X1 for a stencil
update code, compared with 35 for MPI.

16

Comparison with MPI (iii)

A colleague of mine (Ashby, 2008) recently
converted most of a large code, SBLI, a finite-
difference formulation of Direct Numerical
Simulation (DNS) of turbulance, from MPI to
coarrays using a small Cray X1E (64 processors).

Since MPI and coarrays can be mixed, he was
able to do this gradually, and he left the solution
writing and restart facilites in MPI.

Most of the time was taken in halo exchanges and
the code parallelizes well with this number of
processors. He found that the speeds were very
similar.

The code clarity (and maintainability) was much
improved. The code for halo exchanges,
excluding comments, was reduced from 176 lines
to 105 and the code to broadcast global
parameters from 230 to 117.

17

Advantages of coarrays

Easy to write code – the compiler looks
after the communication

References to local data are obvious as
such.

Easy to maintain code – more concise than
MPI and easy to see what is happening

Integrated with Fortran – type checking,
type conversion on assignment, ...

The compiler can optimize communication

Local optimizations still available

Does not make severe demands on the
compiler, e.g. for coherency.

18

References

Ashby, J.V. and Reid, J.K (2008). Migrating a
scientific application from MPI to coarrays. CUG
2008 Proceedings. RAL-TR-2008-015, see
http://www.numerical.rl.ac.uk/

reports/reports.shtml

Dawson, Jef (2004). Coarray Fortran for
productivity and performance. In Army HPC
Research Center Bulletin, 14, 4.

Reid, John (2008). Coarrays in the next Fortran
Standard. ISO/IEC/JTC1/SC22/ WG5-N1747, see
ftp://ftp.nag.co.uk/sc22wg5/N1701-N1750

19

