DEVELOPMENT OF THE ECMWF FORECASTING SYSTEM

Jean-Noël Thépaut

European Centre for Medium Range Weather Forecasts ECMWF

Acknowledgements: Lars Isaksen, Mike Fisher, Yannick Trémolet, Peter Bauer, Adrian Simmons, Martin Miller, Sakari Uppala, and many other colleagues from the Research and Operational Departments

Components of the ECMWF forecasting system

Performance of the NWP system

Other applications

Future evolutions and challenges

Slide 2

Components of the ECMWF forecasting system

Performance of the NWP system

Other applications

• Future evolutions and challenges

Slide 3

The operational forecasting system

- Data assimilation: twice per day 12-hour (6-hour) 4D-Var 25 km 91-level; 210/125/80 km minimisations
- High resolution deterministic forecast: twice per day 25 km 91-level, to 10 days ahead
- Ensemble forecast (EPS): twice daily
 51 members, 62-level, 50 km to 10 days, then 80 km to 15 days
- Ocean waves: twice daily Global: 10 days ahead at 40 km; EPS 15 days ahead at 100 km European Waters: 5 days ahead at 25 km
- Monthly forecast: once a week (coupled to ocean model) 51-members, 50/80 km 62 levels, to one month ahead
- Seasonal forecast: once a month (coupled to ocean model)
 41 members, 125 km 62 levels, to seven months ahead
- Boundary Conditions: short cut-off analyses based on 6-hourly 4D-Var initiating a forecast to 3 days, four times per day

Breakdown of core operational computer usage

	1994	2008
24h data assimilation	20%	37%
10-day deterministic forecast	40%	18%
Ensemble forecasts	40%	45%

The issues of computer performance and scalability of the ECMWF NWP system will be addressed by Deborah Salmond and Mats Hamrud

Over the last two/three years, forecasting system developments have included

- T799/L91 higher-resolution forecast system.
- Variable-resolution ensemble prediction system (VAREPS) to 15 days.
- Significant improvements of model physics.
- New satellite data assimilated:
 - METOP-A instruments,
 - MTSAT AMVs + COSMIC GPS radio occultation,
 - More microwave radiances (AMSR-E, TMI and SSMIS),
 - More SBUV ozone retrievals and monitoring of OMI (AURA).
- New moist linear physics in 4D-Var, and 3^{rd} outer loop: now minimizing at T95 \rightarrow T159 \rightarrow T255.
- Better treatment of satellite data in the presence of rain and clouds

Observation data count for one 12h 4D-Var cycle 0900-2100UTC 3 March 2008

Sc	reened		Assii	milated	
• Synop:	450,000	0.3%	• Synop:	64,000	0.7%
Aircraft:	434,000	0.3%	• Aircraft:	215,000	2.4%
• Dribu:	24,000	0.02%	• Dribu:	7,000	0.1%
• Temp:	153,000	0.1%	• Temp:	76,000	0.8%
• Pilot:	86,000	0.1%	• Pilot:	39,000	0.4%
• AMV's:	2,535,000	1.6%	• AMV's:	125,000	1.4%
Radiance data:	150,663,000	96.9%	• Radiance data:	8,207,000	91.0%
• Scat:	835,000	0.5%	• Scat:	149,000	1.7%
•GPS radio occu	ılt. 271,000	0.2%	•GPS radio occul	t. 137,000	1.5%
TOTAL:	155,448,000	100.00%	TOTAL:	9,018,000	100.00%

99% of screened data is from satellites

96% of assimilated data is from satellites

Components of the ECMWF forecasting system

Performance of the NWP system

Other applications

• Future evolutions and challenges

Slide 8

Improvement of ECMWF forecasts

Anomaly correlation of 500hPa height forecasts

Simulated Meteosat imagery

T799 36h forecast from 20080525

(Bechtold 2008)

Meteosat 9 IR10.8 20080525 0 UTC

RTTOV gen. Meteosat 8 IR10.8 ECMWF Fc 20080525 00 UTC:

Components of the ECMWF forecasting system

Performance of the NWP system

Other applications

• Future evolutions and challenges

Other applications: reanalyses

To improve the understanding of

- Weather, climate and general circulation of atmosphere
- Predictability from daily to seasonal, long term variability and climate trends
- Tele-connections
- Atmospheric transport
- Hydrological cycle and surface processes
- Extreme weather, storm tracking, tropical cyclones, ...

To provide initial states, external forcing or validation data for

- Climate model integrations
- Ocean models
- Monthly and seasonal forecasting
- Chemical transport models
- ...
- A substitute for "observed statistics"? An ideal tool to produce and monitor Essential Climate Variables?

Reanalysis schematically

Trend and variability in two-metre temperature

ERA-Interim 1989 \rightarrow to continue as CDAS \rightarrow

ERA-40 1957-2002

- Data-assimilation system
 - T159L60 -> T255L60 / 12 hour 4D-Var
 - New humidity analysis and improved model physics
- Satellite level-1c radiances
 - Better RTTOV and improved use of radiances, especially IR and AMSU
 - Assimilation of rain affected radiances through 1D-Var
 - Variational bias correction
- Improved use of radiosondes
 - **Bias correction and homogenization based on ERA-40**
- Correction of SHIP/ SYNOP surface pressure biases
- Use of reprocessed
 - Meteosat winds
 - GPS-RO data CHAMP / UCAR 2001 →, GRACE and COSMIC
 - GOME O3 profiles 1995 \rightarrow
- New set of Altimeter wave height data 1991→

HPC Workshop, Reading 2008

Slide 16 CECMWF

Tropical Ocean areas

ERA-CLIM?

ERA-Interim

- Research & Development as a collaborative effort 2009-2011 (under FP7 and with a aimed production starting in 2012)
- 1938 \rightarrow 2015 and continue as CDAS
- Important components
 - Recovery, organization and homogenization of observations
 - Improved SST & ICE dataset
 - Variational analysis technique aimed for reanalysis
 - Comprehensive adaptive bias handling (including handling of model biases)
 - Research on coupled atmospheric-ocean-land reanalysis?
 - Better historical forcing data (aerosols, greenhouse gases,...)

Other applications: GEMS Global and regional Earth-system Monitoring using Satellite and in-situ data

•An EC FP6 Integrated Project (2005-2009) that is developing:

- Global modelling and data assimilation for greenhouse gases, reactive gases and aerosols
- An integrated production system for the above
- Regional forecasting of reactive gases and aerosols
- ECMWF is providing:
 - Project coordination
 - Modelling and assimilation system for CO₂, CH₄, O₃, CO, NO₂, SO₂, HCHO and aerosols
 - Analyses for ENVISAT/EOS period (2003-2007)
 - Support for regional air quality forecasting

Status of GEMS

- The system is running a nearreal-time global system for reactive gases and aerosols
- A combined global reanalysis for 2003-2007 for greenhouse gases, reactive gases and aerosols has reached November 2005
- ECMWF is web-hosting coordinated regional air-quality forecasts from ten systems
- Plans are in place for the follow-on project MACC, with more formalised product delivery and user interaction

Real-time forecasts (with assimilation of MODIS data)

HPC Workshop, Reading 2008

Components of the ECMWF forecasting system

Performance of the NWP system

Other applications

Future evolutions and challenges

Slide 22

Future evolutions and challenges

- Model resolution increase
- Increased use of satellite data
- Long window (weak-constraint) 4D-Var
- Ensemble data assimilation
- Modularisation of the IFS
- Non hydrostatic modelling, better physics, etc...

Model resolution increase

- The model spectral resolution will be increased from T799 to T1279 in 2009
 - The resolution increase of the assimilation and the EPS will be commensurate (T399 and T639 respectively)
- The model vertical resolution will be increased from 91 to about 150 levels in 2010
- By 2015, the deterministic model resolution could be T2047 (10km)

Increased realism via higher resolution (horizontal and vertical):

- T1279 (EPS at T639) planned for later next year
- T2047 run as a glimpse of the future

ECMWF

Slide 25

28 cases (forecast runs only, no assimilation)

Hurricane Gustav AMSU-B and 33-36h rainfall T799 oper 2008083100 +36h

from CIMSS Wisconsin

T1279 with 200hPa wind

Simulated infra-red cloud images at T2047 (10kms)

Simulated from a T2047 (~10km) forecast (15min output)

Data sources assimilated at ECMWF

Data volume assimilated at ECMWF

HPC Workshop, Reading 2008

Slide 29

CECMWF

Long window 4D-Var (Mike Fisher, Yannick Trémolet)

- Extending the 4D-Var assimilation window is appealing because:
 - True equivalence with the Kalman filter at the end of the window
 - Use of all relevant observations to optimally estimate the atmospheric state
- Extending the 4D-Var window requires accounting for model error (Weak-constraint 4D-Var)
- A formulation, with a 4D-state control variable, has been developed
 - Which provides potential for extra-parallelism

Weak constraint 4D-Var

$$J(x) = \frac{1}{2}(x_0 - x_b)^T B^{-1}(x_0 - x_b) + \frac{1}{2} \sum_{i=0}^n [\mathcal{H}(x_i) - y_i]^T R_i^{-1} [\mathcal{H}(x_i) - y_i] + \frac{1}{2} \sum_{i=1}^n [x_i - \mathcal{M}_i(x_{i-1})]^T Q_i^{-1} [x_i - \mathcal{M}_i(x_{i-1})]$$
• Use $\{x_i\}_{i=0,...,n}$ as the control variable.
• Incremental cost function:

$$J(\delta x) = \frac{1}{2} (\delta x_0 - b)^T B^{-1} (\delta x_0 - b) + \frac{1}{2} \sum_{i=0}^n (H \delta x_i - d_i)^T R_i^{-1} (H \delta x_i - d_i) + \frac{1}{2} \sum_{i=1}^n (q_i + M_{i-1} \delta x_{i-1} - \delta x_i)^T Q_i^{-1} (q_i + M_{i-1} \delta x_{i-1} - \delta x_i)$$
where $b = x^g - x_b$, $d_i = \mathcal{H}(x_i^g) - y_i$ and $q_i = \mathcal{M}_{i-1}(x_{i-1}^g) - x_i^g$.

- The model does not appear in the J_o term,
- In practice x_i is defined at regular intervals within the assimilation window.

ECMWF

Weak Constraint 4D-Var

•The outer loop can run in parallel for each sub window

Slide 32

0

• •

Ensemble data assimilation

- Run an ensemble (e.g. 10 + 1 control) of analyses with random observation, SST field and model perturbations, and form differences between pairs of analyses (and short-range forecast) fields.
- These differences will have the statistical characteristics of analysis (and short-range forecast) error.

To be used in specification of background errors = "errors of the day". To indicate where good data should be trusted in the analysis (yellow shading).

This is also used in the initialization of the EPS

Hurricane Emily 19-20 July 2005

Ensemble Data Assimilation spread for zonal wind at 850hPa

Ensemble DA 6h forecast spread for 850hPa u-wind T799 10 member ensemble valid 00UTC 19 July 2005

Max. stdev of EnDA spread 19m/s

20050719 0 UTC Probability that EMILY will pass within 120km radius during the next 120 hours tracks: black=OPER, green=CTRL, blue=EPS numbers: observed positions at t+..h 100 EPS probability at 00UTC 19 July 90 80 70 60 50 40 30 -108. 120 -132 -144 -156 20 Ensemble DA 6h forecast spread for 850hPa u-wind

T799 10 member ensemble valid 00UTC 20 July 2005

Max. stdev of EnDA spread 30m/s

Standard deviation of zonal wind near 850hPa calculated from two 10-member EnDA ensembles. The contours represent the mean sea level pressure field (5hPa interval).

The right panel is for an ensemble with T_L399 outer loop and a single T_L159 inner loop.

The left panel is from an ensemble with $T_{L}799$ outer loop and two minimisations at $T_{L}95$ and $T_{L}255$, respectively. Maximum spread values are 13.44ms⁻¹ for the lower-resolution ensemble, and 29.77ms⁻¹ for the $T_{L}799$ ensemble.

DECMWF

Modularisation of the IFS (1) (Yannick Trémolet, Mike Fisher)

- The IFS code is more than 20 years old. Over this period it has reached a high level of complexity, which is becoming a barrier to future scientific developments, and makes the ramp-up phase for new scientists/visitors unacceptably long.
- This makes the case for rethinking the design of the IFS (in particular the data assimilation)
 - All data assimilation schemes manipulate a limited number of entities (H, M, R, B, x, y, ...)
 - To adapt to future scientific developments, these entities should easily be accessible
- Information-hiding and abstraction are important: only those parts of the code that need to know about the detailed structure of some entity (e.g. model fields) should be exposed to it.
- Object-oriented languages (e.g. Fortran 2003) contain the features required to fully express these ideas.

HPC Workshop, Reading 2008

Modularisation of the IFS (2)

- The main idea of abstraction is to separate the algorithm from the detailed implementation of the objects it deals with.
- This will be tried for the entire incremental 4D-Var algorithm.
- The result would be a 4D-Var framework into which we could plug a variety of models.
- Question to the audience:
 - Yannick (yannick.tremolet@ecmwf.int tel: 2110)
 - Mike (mike.fisher@ecmwf.int tel: 2622)
 - Would like to know more about the future F2003 compilers on forthcoming HPCs, and about any OO technologies at large on these future machines

