

Seamless Simulations with Multi-Scale Simulator for the Geoenvironment (MSSG)

<u>Ryo Onishi</u>, Takeshi Sugimura, Yuya Baba and **Keiko Takahashi** Earth Simulator Center (ESC), Japan Agency of Marine-Earth Science and Technology (JAMSTEC) <13th WS on Use of HPC in Meteorology @ ECMWF, 3 Nov. 2008>

<u>Multi-Scale Simulator for the</u> <u>Geoenvironment (MSSG)</u>

- Applicable to global, regional and local scales seamlessly
- Ying-Yang grid for globe
- Consists of 3 modes; atmos. / ocean / coupled
- Highly optimized for the Earth Simulator (ES)

1m~100m

MSSG-A (atmos.)

roou

1408

1208

100

MSSG (coupled)

Typhoon ETAU in 2003

Outline of MSSG

		MSSG-A	MSSG-O
		Non-hydrostatic AGCM	Non-hydrostatic /hydrostatic OGCM
governing eqs.		Fully compressive N-S eqs.	incompressive N-S eqs.
grid system		Yin-Yang grid (overlapped 2 lat-lon)	Yin-Yang grid (overlapped 2 lat-lon)
discritization spa	ace	Arakawa-C grid (horizontal), Z* (vertical)	Arakawa-C grid (horizontal), Z* (vertical)
ti	time 3 rd /4 th Runge-Kutta		3 rd /4 th Runge-Kutta
adv. schemes		5 th flux form, WAF, CIP-CSLR	5 th flux form
non-adv. schemes		4 th flux form	4 th flux form
sound wave		HEVI, HIVI	Implicit methods (2D, 3D)
microphysics		Bulk method (Qc,Qr,Qi,Qs,Qg)/ hybrid-Bin method	-
turbulence model		static Smagorinsky scheme	static Smagorinsky model
other models		cloud radiation model, backet land model, UCSS urban canopy model	sea-ice model
parallelization		horizontal 2D decomposition by MPI/ vertical decomposition by micro-task	horizontal 2D decomposition by MPI/ vertical decomposition by micro-task

the Earth Simulator (ES)

current ES (since 2002)

- Vector-type super computer
- 640 nodes (5120 CPUs)
- Theoretical Peak Performance = <u>40 TFLOPS</u>.
- Main Memory= 10 TB.

upgraded ES Vector-type

March,2009

replaced

- Vector-type super computer
- 160 nodes (1080 CPUs)
 - Theoretical Peak Performance = <u>131 TFLOPS</u>.
- Main Memory=20 TB.

Performance of the MSSG on the Earth Simulator

CASE	TPN	TAP	grid pts	Mflops/AP	Vector Length	V.OP ratio	Tflops	Peak ratio	Parallel efficiency	Speed up
	512	4096		4166.7	229	99.3%	17.07	52.1%	90.0%	461.0
C	384	3072	3,866,296,320	4273.8	229	99.3%	13.13	53.4%	92.3%	354.6
	256	2048		4401.9	229	99.3%	9.02	55.0%	94.8%	242.6
	512	4096	2,882,764,800	4575.2	228	99.5%	18.74	57.2%	93.6%	479.1
A	384	3072		4606.1	228	99.5%	14.15	57.6%	95.1%	365.2
	256	2048		4692.4	228	99.5%	9.61	58.7%	96.7%	247.5
	512	4096	2,882,764,800	4340.8	229	99.4%	17.78	54.3%	90.7%	464.4
RA	384	3072		4401.0	229	99.4%	13.52	55.0%	92.9%	356.6
	256	2048		4560.5	229	99.4%	9.34	57.0%	95.1%	243.5
	498	3984	4,954,521,600	3629.3	240	99.3%	14.46	45.4%	80.6%	401.3
	398	3184		3568.5	240	99.3%	11.36	44.6%	83.8%	333.7
0	303	2424		3986.8	240	99.3%	9.66	49.8%	87.2%	264.2
	207	1656		4234.3	240	99.3%	7.01	52.9%	90.9%	188.2

C: Coupled; A: Atmos.; RA: regional Atmos.; O: Ocean

MSSG is selected as a core application for the next Japanese flagship supercomputer with 10PFLOPS

°200'Google™

Imara NASA

1.9km global atmosphere simulation

$\Delta_{\rm H}$ =1.9 km, 32 levels

Seasonal atmosphere simulation

seasonal simulation with Δ_{H} =40 km

precipitation at JJA (summer in NH)

Northern Pacific Ocean with MSSG-O

Coastal current with MSSG-O

The Northern Pacific Ocean nesting to Japan region

 $\Delta_{\rm H}$ =850m, 40 vertical layers

Atmosphere-Ocean coupling system

Coupled simulation for Typhoon 10 of 2003

Urban simulation with $\Delta = 5m$ (Tokyo station area)

Hybrid vertical coordinate system (σ - & z-system)

vertical σ-coordinate system

vertical σ- & z -coordinate system

Snapshot of wind distribution in a summer afternoon

Adaptive Mesh Refinement for Coupled simulation

Coupled Typhoon simulation by AMR

1014.8

1007.8 1006.4 1005

1003.6 1002.2 1000.8

999.4 998 996.6

995.2 993.8 992.4 991

989.6 988.2 986.8

985.4 984 982.6

981.2 979.8 978.4

977 975.6 974.2

972.8 971.4 970

1012 1010.6 1009.2

T0310 slp 08/07 07:00 UTC

	Atmos.	Ocean		
Level 0	$\Delta_{\rm H}=11 \rm km$	$\Delta_{\rm H}=11 \rm km$		
(static)	(global)	(global)		
Level 1	∧ _5.51mm	۸ _5 51rm		
(static)	$\Delta_{\rm H}$ =5.5km	$\Delta_{\rm H}$ =5.5km		
Level 2	$\Lambda -2.8$ km	$\Lambda -2.8 \text{km}$		
(dynamic)	$\Delta_{\rm H}$ =2.8km	$\Delta_{\rm H}$ =2.8km		

MSSG is selected as a core application for the next Japanese flagship supercomputer with 10PFLOPS

Concluding Remarks (intermediate)

- MSSG (Multi-Scale Simulator for the Geoenvironment) for seamless simulations
 - Applicable to global, regional and local scales seamlessly
 - Consists of 3 modes; atmos. (MSSG-A) / ocean (MSSG-O)
 / coupled (MSSG)
 - High performance of more than 50% of the peak performance with 4096 vector processors.
 - AMR system for efficient simulations
- MSSG is being tuned for the next Japanese flagship supercomputer with 10PFLOPS.

Research on cloud microphysics using MSSG

MSSG has <u>Hybrid-Bin method</u> as well as a conventional Bulk method.

MSSG-Bin method (Hybrid-Bin method)

spectral Bin method for liquid water, and conventional Bulk method for solid water

Use of MSSG as a Mesoscale model

- MSSG has been validated in idealized tests
 - StMIP-Steep Mountain Model Intercomparison Project (Satomura et al., 2003)
 - orographic precipitation with mixed-phase microphysics (Thompson et al., 2004)
 - RICO-Rain In Cumulus over the Ocean (GCSS)

Droplet growth in clouds

Droplet collision growth in Bin method

Collision kernel models

<u>Hydrodynamic (Gravitational) Collision Kernel Model</u> (No turbulent collisions)

$$K_{c}(r_{1}, r_{2}) = \pi R^{2} |V_{\infty}(r_{1}) - V_{\infty}(r_{1})|$$

(*R* : collision radius (= $r_1 + r_2$), V_{∞} :settling velocity)

our <u>Turbulent Collision Kernel Model</u> (with turbulent collisions)

$$\left\langle K_{c}(r_{1}, r_{2}, \underline{l_{\eta}}, u', \operatorname{Re}_{\lambda}) \right\rangle = 2\pi R^{2} \left\langle \left| w_{r} \right| \right\rangle g(R)$$

 $\int \frac{w_r}{w_r}$: radial relative velocity at contact (Wang et al. 2000) g(R): radial distribution function at contact (original model)

RICO model intercomparison

- Initial data from "<u>Rain In Cumulus over the Ocean</u>" field campaign by GCSS
- Practical for investigating cloud microphysical processes

extra 1-hour simulation for visualization (MSSG-Bulk)

1-hour-simulation with MSSG-Bulk method

MSSG-Bin results (Hydrodynamic Kc v.s. Turbulent Kc)

Snapshots at 24h (blue: $r > 100 \mu m$)

MSSG-Bin with Hydrodynamic (Gravitational) collision kernel (no turbulent collisions)

MSSG-Bin with Turbulent collision kernel

RICO intercomparison participants

model	microphysics	timestep [s]	duration for 24h	*yellow: Bulk models		
			integration [h]	* blue: Bin models		
MESO-NH	1st moment, Kessler	1	440			
SAM	1st moment	2	320			
JAMSTEC	1st moment	1	68			
Utah	1st moment	?	?			
EULAG	1st moment	?	?			
2DSAM	1st moment	?	?			
DALES	2nd moment, Nc fixed	1	190	3 bin models 8		
UCLA	2nd moment, Nc fixed	~ 1.5	80	12 bulk models		
WVU	2nd moment, Nc fixed	~ 1.65	72			
COAMPS	2nd moment	?	?			
UKMO	2nd moment, Nc fixed	~ 0.7	500			
RAMS	2nd moment+CCN	2	weeks			
2DHARMA	bin model (33)	3.5	10,000			
RAMS@NOAA	bin model (33)	2	5,400			
SAMEX	bin model	?	?	\mathcal{I}		
MSSG-Bulk	1 st moment (2 nd for ice), Nc fixed	~ 2.2	250			
MSSG-Bin	bin model (33)	~ 2.2	1,750			

Ref: Margreet van Zanten, GCSS-GPCI/BLCI-RICO Workshop, NY, 2006

Mixing Ratios of Liquid Water (q_p) and Rain Water (q_p)

graphs from GCSS-BLCwg, RICO<http://www.knmi.nl/samenw/rico/>

Mixing Ratios of Liquid Water (q_p) and Rain Water (q_p)

+ MSSG-Bin with Hydr. Kc

Mixing Ratios of Liquid Water (q_r) and Rain Water (q_r)

Large impact of turbulent collisions is shown.

Discussion

- Two Bin-models & "MSSG-Bin model with Hydr. Kc (conventional gravitational collision kernel)" have max q_r at high altitude (z=2km).
- "MSSG-Bin with Turb. Kc" and many of Bulk-models have max q_r at lower altitude.
- In conventional Bin-models, where turbulent collisions are not considered, it takes time for droplets to grow and fall, and therefore they are raised higher.
- Some Bulk-models empirically consider some turbulent collision enhancement to some extent, and therefore show similar results to those by "MSSG-Bin model with Turb. Kc".

Concluding Remarks

- MSSG (Multi-Scale Simulator for the Geoenvironment) for seamless simulations
 - Applicable to global, regional and local scales seamlessly
 - Consists of 3 modes; atmos. (MSSG-A) / ocean (MSSG-O) / coupled (MSSG)
 - High performance of more than 50% of the peak performance with 4096 vector processors.
 - AMR system for efficient simulations
- MSSG is being tuned for the next Japanese flagship supercomputer with 10PFLOPS.
- MSSG-Bin model with turbulent collision model reveals the importance of turbulent droplet collisions in cloud development.

Thank you.