

Canada

High Performance Computing at the Canadian Meteorological Center (CMC)

Michel Desgagné, Luc Corbeil, Vivian Lee, Michel Valin RPN/CIOB Environment Canada

Reading, UK November 3, 2008

- Current supercomputing situation
 - IBM Power5+ system upgrade
- Current activities involving supercomputing
- Future needs

Current Hardware

- Supercomputer contract with IBM started in Dec. 2003
 - Azur, p690, 960 cpus, Power4 1.3GHz
- Upgrade 1 accepted Dec. 2006
 - Maia(608-944) / Naos(608), p575+,
 - 1216-1552 cores, Power5+ dual-core 1.9GHz
- Upgrade 2 was optional, exercised in September 2007
- Contract ends in December 2011
 - Procurement needed for 2012 and beyond

CMC's History of FLOPS

1914,910,910,980,00	8,98 [,] 98 [,] 98 [,] 98 [,] 98 [,] 99 [,] 99 [,] 99	0,00,00,00,00°,00°,00°,00°,00°,00°,00°,	202,00 ⁴ 00 ⁵ 00 ⁵ 00 ⁵ 0 ¹ 0 ¹ 0
			V V V V V V

Project Phase	Delivery Dates	Additional Nodes	Total node count	Total Contract nodes (based on CSP)
Upgrade 1 – Phase 1 and 2 (Maia / Naos)			91	73
Upgrade 2 - Phase 1	Dec 2007	19	110	73
Upgrade 2 - Phase 2	Sept 2008	127	237	73
Upgrade 2 - Phase 3	June 2009	45	282	167

EC accepted IBM Power5+ offer

Pros

- IBM will deliver ~1.7X the minimum contractual performance
- Avoid heavy procurement costs (human and \$\$)
- More computing power materializing sooner
- Upgrade path much easier for users
- Cons
 - Same technology for 5 years (until December 2011)
 - Hardware failures likely to increase
 - IBM still contractually committed to 99% availability
 - Redundancy level is high
 - Serial or quasi-serial applications will not see a gain

NAOS - Accounting Trend - last 10 Days

1ada

CFS: Archiving

- Usage: 1.4 PB (= 1400 TB) (single copy)
- Capacity: 6k tapes 3 PB (single copy)
- Daily: Write: 7.5 TB / Read: 4.5 TB

Cana

Uninterrupted (24/7, year-round) weather and environmental forecasts, serving public and military needs of Canadians

Uniform resolution Global GEM 33km 53% - 272 CPUs

Variable resolution Regional GEM 15km 20% - 400 CPUs **CMC Operational NWP model** Global Environmental Multiscale (GEM) model

Limited Area Configuration GEM-LAM current windows 15 % - 288 CPUs

> 2.5 km Arctic and Baffin Island - IPY

> > 2.5 km Atlantic and Lunenburg Bay

2.5 km East QC and ON

2.5 km West, BC and AB

The Global Ensemble Prediction System

Monte Carlo methods are used to estimate the uncertainty in the forecast.

Air Quality Modeling: **<u>GEM-MACH15</u>**

GEM 15 km with an in-line Chemistry Model

AURAMS

To be implemented late 2008

Thanks to Richard Hogue

nement Environment Canada Page 12

- Natural disasters
 - Volcanic eruptions, Forest fires, Dust
- Radiological agents
 - Nuclear Emergencies
 - Part of Canadian Authority for CTBT (Nuclear Test Ban Treaty)
- Toxic industrial chemicals
- Chemical warfare agents
- Biological agents/toxins

Fires

Environmental Emergency Response at CMC Nature of Hazardous Releases

AUTORDUTE 40 FERMÉE Un camion de matières d'angereuses renversé

Page 13

Environmental Emergency Response at CMC Truck Accident near Dorval

Accident: Oct. 12, 2005, Highway 40 near Dorval

Semi-trailer containing 30 tons of Sodium Hydrosulfite

Hazard area extends ~ 500 m downwind

36.0

Climate modeling

- Understanding Regional and Global climate changes
- GCM spectral models
- Contributor to the IPCC report (So I can say I won (a small tiny piece) of a Nobel Prize!
- Order 6000 CPU-Hours daily (~25% of total resources)

Vancouver 2010 Olympics forecasting project

- Triply-nested
 GEM LAM
 15 km, 2.5 km
 and 1 km
- Surface model
 100 m res. over the Olympics region

Atmosphere-Ocean Coupling

Operational Targets for next 10 years

- Resources have increased by a factor of 5 in the last 5 years
- Considering a factor of 7-10 in the next 5 years we expect to be able to provide:
 - Global 20-25 km uniform resolution, 90 levels
 - Regional 8-10 km, 90 levels
 - In Operation by 2015
- Considering another factor of 5 in the following 4-5 years we expect to be able to provide:
 - Global 10-15 km uniform resolution, 110 levels
 - Regional 4-5 km, 110 levels
 - In Operation by 2020

Future

- Key decisions on the facility
 - Power and space constraints
- Preparing applications for future architecture
- Increase NWP model resolution (and improve modeling)
- Managing insane amount of data
- More collaboration with non-traditional partners
- More data available to the public

