DKRZ

HPC-Infrastructure for Earth System Research

Joachim Biercamp Panagiotis Adamidis Stephan Kindermann Mathis Rosenhauer

Use of HPC in Meteorology, Reading 2008

Joachim Biercamp, DKRZ

DKRZ: German Climate Computing Center

- Integration of different functions
- Provision of decentralized services to the community.

DKRZ, Spring 2009

FHH BWF UNI

Joachim Biercamp, DKRZ Deutsches Klimarechenzentrum Bundesstraße 45

Lehmann + Partner Architekten

Januar 2008

DKRZ

Evolution of HPC at DKRZ

The new computing and data system ("HLRE2")

Use of HPC in Meteorology, Reading 2008

15

Challenges for HLRE2 and beyond

- thousands of cores
- multi-core architecture

(Efficient) data handling

Data growth

Use of HPC in Meteorology, Reading 2008

Joachim Biercamp, DKRZ 18

Meeting Data Management Challenges @ DKRZ

(1) Limiting the increase in data volume

- Compute power increase: factor of ~60
- Increase in storage capacity: from 1 PByte/y -> 10 PByte/y
 - Media costs
 - Bandwidth of data server and tape devices

Incentive to reduce data volume before archiving

• As many disks as we can effort (6 PByte)

("Once on tape, forever on tape !")

- Data is owned by PI, not individual user (e.g. student)
- Quota
 - PI needs to apply for storage capacity
 => review by scientific steering committee)
 - Different quota for
 - a. "project" data (limited life time)
 - b. "Persistent" data (Publications, documented data, CERA database, IPCC process,)

Meeting Data Management Challenges @ DKRZ

(2) Storage and archiving of Model output

Model I/O → GPFS

some projects underway to address parallel, optimized

$\mathsf{GPFS} \rightarrow \mathsf{HSM} (\mathsf{HPSS})$

- raw data
- chunks of (processed) time-series or time slices
 - catalogued in metadata database (CERA), to enable fast access to individual chunks/slices without the need to access and filter huge raw data files
 - chunks/slices are grouped and stored in container-files (own development, replacement of oracle blob storage)
 - simple transaction support for container-fill process

(3) Becoming an IPCC AR5 data node

Uniform AA infrastructure

→ integrate OpenID Authentication and SAML based Attribute Service Callouts into local data access infrastructure

Metadata based discovery

→ publish Metadata for discovery in other IPCC portals (Infrastructure for this is in place, format is under discussion)

(efficient) porting and scaling

Typical challenges with codes coming from the NEC SX-6 vector architecture

- fitting into cache through loop exchanges and blocking is paramount.
- vector tolerates stride n memory access where n isn't power of 2 - scalar does not!
- No more intricate IF statements inside loops. Compiler and processor don't help out with vector compression and mask registers

Some IBM-specific challenges we are tackling with their help

 Coupled ESMs love MPI2 process spawning and fancy inter-communicator tricks.
 IBM's Parallel Environment? Not so much.

• NEC had very easy to use and yet thorough performance analysis tools. IBM's tools - while powerful - give us plenty opportunity for user training.

Even though AIX is much more widespread than SUPER-UX
 We still need to compile and support a wide range of open source software our users have come to be accustomed to.

First results (Here: PALM Large Eddy Simulation)

Plans and Projects: Next Steps

- Setting up **COSMOS** for IPCC AR5

• talk by Luis Kornblüh on Wednesday

STORM

- ambitious (reference) experiment -> to be run in 2009 / 2010
- coupled IPCC type ocean atmosphere model with (very) high resolution
 - ECHAM5 T255 (or higher ?!)
 - MPI-OM (tp 01: tripolar 0.1 deg)
 - OASIS 4
- Use 1000+ cores per run

COSMOS/STORM: Code Optimization

Methods: Cache Blocking Techniques Computation vs. Communication: Expanding Halos More Local Operations Less Communication Load Balancing: Land/Sea Points Effort (MPI-OM ocean model only): Treat ~40 subroutines 0.5 – 1 person years

Expected efficiency gain: 5% -> 10% -> 15% (of peak)

Later: Try CG Method with appropriate Preconditioner Faster Convergence => Less Iterations Less Communication

Plans and Projects: Going Petascale

ScalES (Scalable Earth System Models; BMBF funded, Start Jan 09?)

- Identify bottlenecks which inhibit scaling
 - I/O
 - Communication Network
 - Memory Bandwidth
 - Idle Processor Times
- Address in COSMOS ESM (-> prototype for general procedure)
 - Parallel I/O
 - Load balancing
 - Coupler
 - Efficient use of state-of-the-art architectures
 - Dissemination and sustainability

Plans and Projects: Going Petascale

IS-ENES (Infrastructure for ENES (European Network for Earth System Modelling))

- FP7, expected start Jan 2009
- JRAs to tackle scalability and portability
- NAs to pave the path to DEISA and PrACE
- Coaching and support

PeaKLIM (Petaflop-Architekturen in Klimaforschung und Meteorologie)

- Preparing for the petaflops challenge
- Cooperation of Climate research (MPI-M), computer science (FHG-SCAI) and service providers (DWD and DKRZ)
 - -> Thursday: Talk by G–R. Hoffmann, U. Trottenberg

Thank You !

Joachim Biercamp (biercamp@dkrz.de)

