
 

557 

 
TIGGE: Medium range multi model 

weather forecast ensembles in  
flood forecasting (a case study) 

 
F. Pappenberger1, J.Bartholmes2, J. Thielen2 

and Elena Anghel3 
 

Research Department 
 
 

1 ECMWF, Reading, UK 
2 Joint Research Centre of the European Commission, Ispra, Italy 

3 National Institute of Hydrology and Water 
Management of Romania 

 
 
 

January 2008 
 
 



 

 

Series: ECMWF Technical Memoranda 
 
A full list of ECMWF Publications can be found on our web site under: 
http://www.ecmwf.int/publications/ 
 
Contact: library@ecmwf.int 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Copyright 2008 
 
European Centre for Medium Range Weather Forecasts 
Shinfield Park, Reading, Berkshire RG2 9AX, England 
 
Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not 
to be reprinted or translated in whole or in part without the written permission of the Director. Appropriate 
non-commercial use will normally be granted under the condition that reference is made to ECMWF. 
 
The information within this publication is given in good faith and considered to be true, but ECMWF accepts 
no liability for error, omission and for loss or damage arising from its use. 



TIGGE: Medium Range multi model weather forecast ensembles … 

 
 

 
Technical Memorandum No.557 1
 

Abstract 

The performance of a hydrological multi model flood forecast system with inputs provided by seven ensemble 

prediction systems of the THORPEX Interactive Grand Global Ensemble (TIGGE) archive is evaluated. A flood 

forecast of this multi-model ensemble has been computed for case study the October 2007 floods in Romania using the 

LISFLOOD model of the European Flood Forecasting System (EFAS) as hydrological component. None of the forecast 

centres (ECMWF, UKMO, JMA, NCEP, CMA, CMC, BOM and simple multi-model ensemble) predict the distribution 

of precipitation observations exactly, with most centres exhibiting an over prediction at day nine. The distribution of 

discharge predictions for observations and forecasts is similar at the lower flow. The percentage of precipitation and 

discharge forecasts above and below the 10th and 90th percentile of the predicted EPS distributions is very high. The 

UKMO, ECMWF and the multi-model ensemble forecast perform favourably in terms of root mean squared error of the 

ensemble mean discharge and precipitation predictions. All forecasts (apart from the one issued by BOM) would have 

lead to a correct flood warning about 8 days in advance. It can be demonstrates that the Multi-model ensemble has the 

best average properties, followed by the forecast of ECMWF and UKMO. The increased quality achieved by the multi-

model ensemble is explained by the fact that it provides a better approximation at the tails of the distribution. All 

analysis is based on a set of criteria specific for this case study and might be different in more general cases.  

1. Introduction 

One major research challenge of the 21st century is to mitigate the effects of natural hazards. Of all natural 
disaster, flooding is the most frequent, affecting the second largest number of people after droughts causing 
damage in excess of several billion Euros a year [4].  

Flood forecasting based on observed precipitation or river levels, limits the lead time of the forecast to the 
natural response time of the catchment. However, longer lead times provide civil protection authorities with 
more time to prepare for the event and give an advanced warning to the public, and could reduce the socio-
economic impact of the flooding. Although the incorporation of numerical weather forecasts into a flood 
warning system can significantly increase forecast lead time [for example 5,6-10], many hydrological 
services consider the use of forecasted rainfall to introduce an unacceptable degree of uncertainty into their 
forecasts making decision making problematic [11]. Currently, numerical weather predictions with a single 
deterministic forecast are mostly used for hydrological predictions in the short range, in which the quality of 
the forecasts is still high and the impact of uncertainties such as initial conditions on the weather predictions 
are low [12].  

These limitations are addressed by ensemble prediction systems (EPS) which incorporate uncertainties in the 
initial conditions and factors of the modelling process in the numerical weather predictions and produce 
multiple weather forecasts [13]. It has been demonstrated that EPS have more value than a single 
deterministic forecast with the same resolution from the same modelling system [14,15]. EPS are used 
successfully at meteorological forecasting centres around the world [16-22]. Recently EPS are also 
increasingly applied in coupled meteorological-hydrological modelling systems. Examples of such integrated 
approaches of operational flood forecasting systems in are shown in Bangladesh [23] the flood forecasts of 
the Finnish Hydrological Service [24] and Swedish Hydro-Meteorological Service [25], the European Flood 
Alert System [2] and many more.  
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EPS forecasts from a single forecast centre only address some of the uncertainties inherent in numerical 
weather predictions and many other sources such as boundary conditions or numerical implementations 
exist. For example, model physics and numerics have substantial impact in generating the full spectrum of 
possible solutions [26]. A multi-model approach is an effective and pragmatic approach of incorporating 
some of these additional sources of uncertainty [27].  

In this paper we aim for an evaluation of a hydrological multi model ensemble flood forecast. The 
meteorological input data are provided by the THORPEX (http://www.wmo.ch/pages/prog/arep/thorpex/) 
Interactive Grand Global Ensemble (TIGGE) data archive which collects global ensemble forecasts from 
more than seven meteorological centres around the world. This initial evaluation will be performed on a case 
study of a 2-5 year return period flood event that took place in Romania in October 2007 in tributaries to the 
Danube. We used the standard set-up of the European Flood Alert System (EFAS) [1], which provides early 
flood alerts for Europe pre-operationally [2,3] since 2005. The analysis will focus generally on the region, 
but also two individual locations with their flood warning status evaluated based on these results. 

2. Experimental set-up 

In this section the experimental set-up of the case study experiment will be presented. First a brief 
introduction to the TIGGE data set is given, then EFAS is introduced and finally the event and study region 
is described.  

2.1 Thorpex Interactive Grand Global Ensemble (TIGGE) 

TIGGE is a key component of THORPEX, a World Weather Research Programme to accelerate the 
improvements in the accuracy of 1-day to 2 week high-impact weather forecasts for the benefit of humanity. 
Part of the key objectives of TIGGE is to test concepts of a TIGGE Prediction Centre to produce ensemble-
based predictions of high-impact weather, wherever it occurs, on all predictable time ranges. This paper 
contributes to this objective, by evaluating the case study with regard to real time flood forecasting. Table 1 
shows the forecasts used in this study. All forecast centres provide forecasts of at least 10 days with the 
exception of Japan, which provides forecasts only up to day 9. Only the first 10 days of meteorological 
forecasts have been used to force the hydrological model in order to allow for a comparison with the 
standard set-up of the EFAS.  

The usage of the multi-model TIGGE ensembles in flood forecasting (i) recognizes that multiple modelling 
structures may be equally valid representations of the system and application in question (ii) accepts that all 
models have their inherent weaknesses and strengths (iii) harvests the fact that each model makes use of 
different information and incorporates information in different ways (for example differences in data 
assimilation) [28]. In this way some of the deficits of using the output of a single model EPS are overcome. 
The caveat is that it will never be possible to represent the full range of all uncertainties present in the 
modelling process. This would not only require a very large number of different implementations of model 
structures, but also a full understanding and quantification of all sources of uncertainty, which is impossible 
[29]. Moreover, all models in any current multi-model prediction systems are based on the same paradigm of 
current scientific consensus of the physical processes in the atmosphere and land surface. Therefore, this 
approach inevitably neglects sources of uncertainty outside the current paradigm. Nevertheless, multi-model 
prediction systems have been proven successful in meteorology and hydrology [30,31]. Moreover, 



TIGGE: Medium Range multi model weather forecast ensembles … 

 
 

 
Technical Memorandum No.557 3
 

methodologies have been suggested to incorporate the uncertainty of meteorological, hydrological and 
hydraulic models [5,7]. 

 

Table 1: Meteorological forecast centres and the data used in this study. For the hydrological forecasts 
only the first 10 days of lead time were used.  

Centre Abbreviation Country / 
Domain 

Ensemble 
Members 

Horizontal 
Resolution  

Vertical 
Levels 

Forecast 
Length 

Bureau of Meteorology BOM Australia 33 TL119○ 19 10 

China Meteorological 
Administration 

CMA China 15 T213 31 10 

National Centre for 
Environmental 
Predictions 

NCEP USA 21 T126 28 16 

UK MetOffice UKMO United 
Kingdom 

24 1.25x0.83deg 38 15 

Canadian 
Meteorological Centre 

CMC Canada 21 T254 
(up to 3.5 days) 
then T170 

64  
(up to 3.5 
days) then 42 

16 

Japan Meteorological 
Agency 

JMA Japan 51 TL159 40 9 

European Centre for 
Medium-Range 
Weather Forecasts 

ECMWF Europe 51 TL399  
(up to day 10) 

62 15 

 

The TIGGE archive contains all variables such as precipitation, evaporation, 2 metre temperature which are 
necessary to drive the hydrological model of EFAS.  

 

2.2 European Flood Forecasting System (EFAS) 

The repetitive occurrence of high impact trans-national floods in Europe prompted the European 
Commission to investigate new strategies for flood prevention and protection, with focus on coordinated 
actions among countries sharing the same river basin and funded the development of EFAS [1,5,10,11]. 
EFAS aims to increase preparedness in trans-national European river basins [2,3,32,33] by providing early 
flood warning information on a catchment scale. Its weather forecasting inputs include the full set of EPS 
forecasts from ECMWF as well as a poor-man ensemble consisting of ECMWF and DWD deterministic 
forecasts. These inputs allow EFAS to provide local water authorities with probabilistic medium-range flood 
forecasting information 3 to 10 days in advance.  

The hydrological model of EFAS is the LISFLOOD model, a hybrid between a conceptual and a physical 
rainfall-runoff model with a channel routing [1,2]. It is set-up for the whole of Europe on a 5 km grid. Each 
weather forecast ensemble member is propagated through the hydrological model as a single deterministic 
forecast and the resulting distribution of discharges is explored. At each pixel all information is combined 
into early flood warning information [33] in the form of spatial overview maps or time series information at 
any user defined pixel.  
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EFAS runs without assimilation of observed real time river discharge data [as for example by 34] which 
allows the application of this warning system to ungauged catchments [35]. Four warning levels (low, 
medium, high and severe) are derived at each pixel from long-term model simulations with observed 
meteorological data. The highest simulated discharge of the entire simulated time series represents the 
highest critical threshold (severe) and the 99% quantile, the 2nd highest critical threshold (high), the medium 
warning level is defined by 98% quantile and the low warning level by the 97% quantile. At each pixel, 
EFAS determines the highest threshold exceeded during a 24 hour interval. The forecasted discharge 
distribution is compared against the thresholds at each pixel and threshold exceedance calculated. 

Analysis of EFAS results through case studies [for example 32] and statistical skill score analysis [3] has 
shown that medium-range probabilistic flood forecasts can provide added value information that is 
complementary to local and national forecasting centres. 

2.3 Description of study area and event 

The study area is in the country of Romania (central/eastern Europe) and concentratres on rivers Siret, Jium, 
Olt and Arges which are tributaries of the River Danube. In October 2007 the hydrological regime of almost 
all the Romanian rivers was above the monthly mean multiannual values. In the last ten days of the month 
the precipitation regime exceeded the normal values of the whole month due to the high instability of the 
weather and torrential rainfall, especially during 20th -24th October and so the discharges in the rivers 
increased. Flooding was reported in parts of the country espesically the south west and east (see figure1). 

 

 
Figure 1: Flood Levels and Attention Levels in Romania exceeded during the 23rd to 25th of October 
2007. The basemap for this figure has been kindly provided by E. Anghel from the National Institute of 
Hydrology and Water Management, Bucharest Romania. 
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3. Methodology  

In this section, the methodology used to evaluate the forecasts will be explained in more detail, the method 
used to assemble a multi model explained and the difference in the evaluation of precipitation and discharge 
predictions are discussed, which is essential to understand the results.  

3.1 Numerical Methods 

The numerical methods are used in this study to evaluate the performance of the forecast systems include: 

• Quantile-quantile plots in which the distribution of the observed values is plotted against the 
distribution of the forecasted values. In an EPS the forecasted values outnumber the observed values 
as each observation is predicted by multiple forecasts. Therefore, in this paper the 5th to 95th 
percentiles are plotted in steps of 5%. A good fit between both distributions would be indicated by 
this plot if the plotted values fall onto a straight line.  

• Outlier plots in which the number of observations above or below the 10th and 90th percentile given 
by the EPS distribution is shown. 

• The Root Mean Squared Error (RMSE) between the ensemble mean and the observations. 

• The Rank Probability Score (RPS) which is equivalent to the Brier score, but measures accuracy of 
probability forecasts when there are more than two categories [36]:  

 ( ), ,
1

1
1

k

fc k obs k
k

RPS CDF CDF
k =

= −
− ∑  (1) 

where CDF is the cumulative distribution function of the forecasted or observed precipitation or 
discharge, k is the number of categories; CDFfc,k represents the probability of the forecasted 
precipitation below the threshold of k; CDFfc,k represents the probability of the observed 
precipitation below the threshold of k.  

The threshold for the precipitation score are derived from the 10th to 90th percentile of the observed 
distribution in 10th percentile steps. The threshold of the discharge score is given by the warning 
maps of the EFAS system (see section 2.2). The closer the RPS is to zero the better the score. 

• Warning profiles for individual points are derived by computing the percentage of ensembles above 
a certain warning level for several consecutive days and lead times.  

The methods used in this paper assume that all ensemble members are equally likely. They do not take 
account of the ensemble size and smaller distributions will have a less well defined cdf especially at the 
extremes, which are of most interest in flood forecasting. Therefore, results cannot be fully interpreted as 
probabilities. 
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3.2 Multi model ensemble (combination) 

There have been many attempts to transform the output of EPS systems with error models to derive 
probability distributions [for a comparison see 37]. However, the low frequency of hydrological extremes 
and the short time period available in the TIGGE archive does not yet allow such an approach in this 
research. Nevertheless, it is possible to combine the results of all ensemble forecasts into a multi-model 
ensemble [38,39]. Evidence suggests that a multi-model concept is superior to the forecasts with individual 
models [38,39]. There are multiple ways to combine multiple forecasts in hydrology and meteorology and a 
comprehensive review can be found in Clemen et al. [40]. Abrahart and See [41] illustrated that the 
improvements achieved with different methodologies varies to a large degree with the dominant hydrological 
regime. The frequency of flood events as well as the short amount of available forecasts, does not justify any 
sophisticated approaches [42]. In its simplest form a multi-model ensemble forecast is produced by simply 
merging the individual forecasts with equal weights [43]. 

3.3 Comparing precipitation and discharge forecasts 

In this paper, precipitation is analysed as the average precipitation upstream of certain locations, which are 
also used for the discharge predictions and results are compared. Despite this spatial similarity of the two 
variables, distinctive differences remain:  

1. Catchments are non-linear filters on precipitation inputs. For example, in the presence of 
threshold processes, small errors in the precipitation forecast can be amplified or dampened [44,45]. 
Additionally, discharge predictions are spatial as well as temporal integrations of precipitation fields. 
Spatial distribution of precipitation fields can influence the shape of a hydrograph, although this will 
depend on the catchment characteristics as well as the antecedent conditions [46,47]. Temporal 
integration is caused by varying travel and residence time of water across most catchments. Thus 
different lead times of precipitation forecasts contribute to different lead times of discharge 
predictions.  

2. A flow hydrograph is strongly influenced by antecedent conditions. Antecedent conditions such 
as soil moisture or ground water levels are more important in analysing discharge forecasts than in 
precipitation predictions. Especially at small lead times discharge predictions can be significantly 
influenced by antecedent soil moisture conditions and ground water could become an important 
control at later stages. No similar considerations are important for precipitation predictions in their 
application to hydrological models. 

3. Precipitation and discharge also vary in their statistical properties. Discharge has a higher auto 
correlation than precipitation. For example, Kann and Haiden [48] have shown that higher 
autocorrelations positively influence skill scores. 

4. The autocorrelation of precipitation largely depends on the accumulation period used in the 
evaluation stage. Pappenberger et al. [49] argued that the accumulation period should reflect the 
residence time of water in the catchment. However, this will vary from catchment to catchment and 
maybe difficult to establish in many cases. Therefore, a generic comparison between different 
catchments and will be only possible if a fixed accumulation time is chosen. Accumulation of 
discharge forecasts is less desirable when the flood is caused by an overtopping of embankments., 
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However, it may be more important if dyke breaching scenarios are of interest or if water balances 
are analysed [for example 50].  

5. Hydrological models have to be calibrated and are an additional source of uncertainty, which 
will have an impact on most of the issues mentioned previously. Moreover, acknowledging the 
uncertainty in the parameterisation and structure of the hydrological model can dampen or 
accentuate differences in the comparison of discharge and precipitation predictions. In this paper, we 
ignore this hydrological uncertainty as we assume that the uncertainty in precipitation forecasts is 
dominant for this flood event, long lead times and the catchment characteristics, as seen in an earlier 
study by Pappenberger et al. [5] for the Meuse catchment.  

All arguments in this section have to be born in mind at the analysis of the results.  

4. Results 

In this section the results of the case study will be presented and precipitation and discharge forecasts will be 
compared.  

4.1 Comparison of precipitation and discharge forecasts over the flooded area 

In figure 2a and 2b the distribution of the observed and forecasted precipitation is compared with a quantile-
quantile plot for each EPS prediction set. The distributions are the same when the dots fall on the straight 
dashed line.  

Figure 2a shows that all ensemble forecasts are over-predicting precipitation at larger precipitation amounts 
at a lead time of one day. The ensemble forecasts by BOM and JMA are closest to the observations. A more 
detailed analysis (not shown here) reveals that the frequency of small precipitation amounts forecasted by all 
EPS is much higher than for observed precipitation (at a lead time of one and five days). At the nine day 
forecasts (figure 2b) a very mixed picture emerges with an under prediction of all ensembles at lower 
precipitation amounts. At high precipitation amounts most ensemble forecast systems still show an under 
prediction. NCEP, CMC and CMA over-predict at high precipitations. The ECMWF forecast follows the 
centre line most closely at high precipitation amounts. The maximum percentile is under-predicted by nearly 
all forecast systems but not CMC. 

In table 2 the observed divided by forecasted precipitation is averaged for all percentiles above 70% over all 
lead times from day one to nine. This represents the upper end of the precipitation distribution representing 
the precipitation which, most likely, contributed most to the flood event.  

The table illustrates that the forecasts by UKMO, ECMWF and the Multi-model ensemble are best for this 
case study. The ensemble forecast by BOM represents the worst precipitation forecast in this case study. In 
figure 3 the distribution of the discharge observations is compared to the distribution of the forecast models 
with a quantile-quantile plot. 
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Figure 2a: Quantile-quantile plot for a lead time of 1 day of the forecasted and observed average 
upstream precipitation.  

 
Figure 2b: Quantile-quantile plot for a lead time of 9 days of the forecasted and observed average 
upstream precipitation. 
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Table 2: Observed divided by forecasted precipitation averaged for all percentiles above 70% over all 
lead times from day one to nine 

Rank Centre Error 
1 ECMWF 0.02 
2 UKMO 0.03 
3 Multi-model -0.03 
4 NCEP 0.10 
5 CMC 0.17 
6 JMA -0.17 
7 CMC 0.18 
8 BOM -0.40 

 

 

At a lead time of one day, discharge forecasts follow largely the observed distribution, which suggests a high 
reliability of the forecasts. Although, the quality of the precipitation forecasts influences the quality of the 
discharge forecasts, the errors are non-linearly transformed and thus results can expected to differ. All 
forecast centres seem to over predict at higher (flood related) discharges, which is similar to the distribution 
shown by precipitation predictions (figure 2a). At this lead time, precipitation, which has already fallen, 
mainly dominates the discharge predictions and thus the distributions between the different forecast centres 
look very similar. The systematic over predictions of discharges at the upper end of the distributions is more 
apparent at longer lead times. This magnitude of over prediction is controlled by the behaviour of the 
precipitation predictions (figure 2b). In contrast, lower discharges have the same pattern regardless of the 
quality of the precipitation predictions, which maybe explained by base flow component that is not mainly 
controlled by the uncertainty of the precipitation, but the hydrological model. The over prediction at large 
discharge amounts could have several reasons such as initial conditions, calibration of the hydrological 
model or discrepancy between observed and forecasted spatial rainfall distribution. Similar behaviour has 
been reported for other areas with different types of hydrological models (for example Pappenberger et al., 
2005), which suggests that this error is due to the difference in spatial and temporal error structure between 
observed and forecasted field. No clear evidence for any of the hypothesis above could be found in this case 
study. In table 3 the observed divided by forecasted precipitation is averaged for all percentiles above 70% 
over all lead times from day one to nine. This represents the upper end of the precipitation distribution 
representing the discharge which, most likely, contributed most to the flood event. 
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Figure 3a: Quantile-quantile plot for a lead time of 1 day of the forecasted and observed discharge.  

 
Figure 3b: Quantile-quantile plot for a lead time of 9 days of the forecasted and observed discharge.  
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Table 3: Observed divided by forecasted discharge averaged for all percentiles above 70% over all lead 
times from day one to nine 

Rank Centre Error 
1 JMA 0.01 

2 UKMO 0.04 

3 BOM -0.05 

4 Multi-model 0.06 

5 ECMWF 0.08 

6 CMA 0.13 

7 NCEP 0.17 

8 CMC 0.16 

 

The error in discharge predictions is smaller in comparison to the error in precipitation predictions for nearly 
four of the eight ensemble prediction systems (BOM, CMA, JMA and CMC). NCEP, UKMO, ECMWF and 
the multi-model ensemble show a small increase. The best forecast is provided by JMA.  

In conclusion, none of the forecast centres predict the distribution of precipitation observations exactly, with 
most centres exhibiting an over-prediction at day nine. The distribution of discharge predictions for 
observations and forecasts is similar for lower discharges. All centres over-predict discharge for higher 
discharges with the exception of BOM, which has the tendency to under predict at longer lead times. In a 
literature review by Pappenberger et al. [51] the maximum error for discharge measurements has been 
quoted as 8.5%.  JMA, UKMO, ECMWF and the multi-model system all have an average error below 8.5% 
and thus could be seen as suitable EPS to predict this flood within the uncertainty of the measurements. 

4.2 Outliers and Root Mean Squared Error (RMSE) 

The quantile-quantile figures 2 and 3 ignore timing errors as all observations and forecast are lumped 
together. In figure 4, the timing error is explored as the percentage of precipitation observations above the 
90th percentile of the forecast distribution, the percentage of precipitation observations below the 10th 
percentile of the forecast distribution and the RMSE is plotted against lead time.  

The percentage of observed precipitation above the 90th percentile of the forecasted distribution is very high; 
between 25% and 40% percent for predictions with a lead time of 1 day falling to below 20% -30% for 
predictions with a lead time of 9 to 10 days for most forecast centres. Exceptions are the BOM and JMA 
which both show a less significant drop. The percentage of observations which is below the 10th percentile at 
a lead time of 1 day is between 30% and 60%. This reflects the findings of the figures above (figure 2 and 3), 
which indicated a under-prediction of observed precipitation by most forecast centres. The different forecast 
ensembles have varying number of members and therefore, the accuracy in the quantification of the extreme 
of the distribution varies. Figure 4 shows no clear dependency in the percentage of observations below or 
above the 10th and 90th percentile respectively. The percentage of observations below the forecast 
distributions of all forecast centres is very high and reflects the fact that an extreme event has been observed. 
The RMSE of the ensemble means increases from an average error of less than 0.1 mm to errors above 0.8 
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mm. All forecast ensembles show a similar distribution besides BOM, which performs significantly worse 
than the other centres. ECMWF, UKMO, CMC and the multi-model ensemble perform best with respect to 
the RMSE of average catchment precipitation. The multi-model ensemble also has a very good overall 
performance as it has a comparably low number of observations below and above the 10th and 90th percentile 
respectively. 

 

 
Figure 4: Percentage of observed precipitation above the 90th percentile of the forecast distribution (top 
figure), the percentage of observed precipitation below the 10th percentile of the forecast distribution 
(middle figure) and the RMSE of the ensemble mean against lead time (bottom figure). 

 

The multi model ensemble also performs favourably when the analysis is repeated for discharge predictions. 
In figure 5, the percentage of observed discharge above the 90th percentile of the forecast distribution, the 
percentage of discharge observations below the 10th percentile of the forecast distribution and the RMSE of 
the ensemble mean discharge is plotted against lead time. 
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Figure 5: Percentage of observed discharge above the 90th percentile of the forecast distribution (top 
figure), the percentage of observed discharge below the 10th percentile of the forecast distribution 
(middle figure) and the RMSE of the ensemble mean against lead time (bottom figure). 

Discharge shows in comparison to precipitation a lower number of observations above the 90th percentile, 
with between 20% and 40% at a lead time of one day and below 30% at a lead time of 10 days. Only, BOM 
has an increasing percentage over the lead time. The average percentage of observations below the 10th 
percentile is ~90% and drops below 20% at a lead time of 10 days. The percentage of outliers thus reflects 
the results above (quantile-quantile plots), with a significant over prediction of discharge by nearly all 
forecast centres. The RMSE is approximately 10 m3/s at a lead time of 1 day and raises to values between 
30 m3/s and 60 m3/s at a lead time of 10 days. The spread of the RMSE of different forecast ensemble mean 
discharge forecasts is significantly larger than the spread in the average precipitation forecasts. This is 
explained by the fact that discharge is a variable mainly integrates over time and is measured at one location, 
whereas upstream precipitation is dominated by spatial averaging. Thus errors can propagate to a much 
larger degree in discharge predictions. The RMSE of UKMO, ECMWF and the multi model ensemble are 
superior to the other forecast ensembles especially at long lead times.  

The percentage of simulations above and below the 10th and 90th percentile is very high for discharge and 
precipitation predictions especially at lead times below 5 days. In fact, only a small proportion of the 
observations is bracketed by the forecasts. UKMO, ECMWF and the multi-model ensemble perform 
comparably well in terms of RMSE of the ensemble mean discharge and precipitation predictions. The multi-
model ensemble also has a comparably low number of observations above and below the 10th and 90th 
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percentile respectively. This analysis suggests that the multi-model ensemble is the optimal choice to 
improve discharge predictions.  

4.3 Rank Probability Score (RPS) 

The previous analysis compared the ensemble predictions and supports the use of a multi model ensemble. 
However, only one deterministic score (the RMSE) has been computed so far and in what follows the Rank 
Probability Score is used to analyse the results in a probabilistic manner. In figure 6, the RPS of the upstream 
average precipitation predictions is computed over thresholds, which are based on the 10th-90th percentiles of 
the observed average precipitation amounts. The RPS increases from ~0.25 at lead time of 1 day to ~0.45 for 
lead times of day 10. The ECMWF model performs best at short range lead times and is overtaken by BOM 
and JMA at a lead time of around day 4-5. UKMO and NCEP perform worse than to the other ensemble 
systems. The multi model ensemble performs comparably well through all lead times. 

 
Figure 6: RPS of all ensemble prediction systems for precipitation. The thresholds are the 10th to 90th 
percentiles of the observed precipitation. 

The threshold analysis of the precipitation analysis does not primarily focus on flooding as it is based on the 
10th to 90th percentiles of the observed precipitation. The thresholds for the discharge forecasts are based on 
the four warning levels of low, medium, high and extreme (see section 2.2 for description) available for this 
area and are therefore, directly flooding related. In figure 7 the RPS for discharge is presented. The BOM 
model system performs exceptionally well, as does JMA and the multi-model ensemble. The fourth best 
model is presented by ECMWF. NCEP has the worst performing model. The high performance of BOM is 
explained by its inactivity. It tends to under predict observed precipitation (see figure 2 and 3) and thus 
scores well as most of the discharge measurements are below the extreme thresholds.  
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Figure 7: RPS of all ensemble prediction systems for discharge. The thresholds are based on the four 
warning levels, which are low medium, high and severe. 

In summary, the analysis above seems to suggest that a multi-model ensemble should be favoured above the 
use of any single ensemble prediction system. The multi-model ensemble compares consistently favourable 
in terms of the percentage of observations bracketed by the 10th and 90th percentile, the RMSE and the RPS 
for discharge and precipitation.  

4.4 Point Flood warnings  

Flood warnings are often based on point predictions, representing the risk of an entire area of getting 
flooded. It is therefore of interest to analyse one location at which flooding has occurred and one in which it 
did not. Only discharge will be analysed in this section as the general trends in the relation of precipitation 
forecasts to discharge forecasts have been illustrated above. In figure 8, the 10th and 90th percentile of 
discharge predictions of the different forecasts with a 2 day lead time are shown. The dashed horizontal lines 
show the four warning levels. The observations (depicted as stars) clearly exceed these warning levels. In 
flood forecasting, the rising limb of the hydrograph is one of the most important feature to predict. It is also 
the most active period of a flood event. Of further importance is the maximum peak discharge and its timing 
as they mainly influence flood alleviation measures. The distribution of the two day forecast is very small. 
The uncertainty bounds of CMA, NCEP), CMC, ECMWF and the multi model ensemble bracket the rising 
limb reasonably well. All of those forecast ensembles also predict the correct timing and magnitude of the 
peak. BOM and JMA predict the flood one day to late. UKMO does not predict the onset of the flood 
correctly, but exhibits a good prediction at the peak. All ensemble forecasts predict a too high recession and 
CMA even seems to predict a second peak. This higher prediction in the recession can have an important 
impact on flood management as it can influence reservoir management, antecedent conditions for the next 
event and water release. It is significant that all forecasts exceed the high warning level and thus a correct 
flood alert could be issued.  
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Figure 8: The 10th and 90th percentile of discharge predictions of the different forecasts with a 2 day 
lead time are shown. The dashed horizontal lines show the four warning levels. 

 
Figure 9: The 10th and 90th percentile of discharge predictions of the different forecasts with a 5 day 
lead time are shown. The dashed horizontal lines show the four warning levels. 
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In figure 9, forecasts for a 5 day lead time for the same location are shown. The distributions are significantly 
larger and can bracket flows below the warning levels as well as far above. CMA, NCEP, JMA, CMC, 
ECMWF and the multi model ensemble predict the rising limb correctly. CMA, CMC and the multi model 
ensemble bracket the peak. NCEP and CMC perform very well for the recession limb. The ensemble spread 
is much larger in comparison to figure 8 and also more observations are bracketed. The widening distribution 
also means that a lower percentage of models are above the warning levels and thus any issuing of warning 
has to be based on decreasing number of ensemble members with lead time. 

In table 4, the skills of all forecast systems are summarized with a tick at each property which performs 
adequately. The analysis is subjective based on the experience of the authors as such a short time period 
prohibits the usage of more complex methodologies. The table shows quite clearly that none of the models 
has been able to predict the recession for a lead time of 2 days adequately. Table 2 indicates that one would 
not choose the forecasts by JMA and BOM for this location. The table also indicates that a multi model 
combination strategy for hydrological applications may have to compute weights which optimize the 
combination to get these desired properties. For example, some forecasts are better in predicting recession 
limbs than others and thus should have more weight in a combined analysis.  

Table 4: Skill of all forecast systems for the lead time of 2 and 5 days in respect to representations of the 
rising limb, peak discharge, timing of the peak discharge and recession. A tick indicates that the process 
has been represented adequately.  

 Rising Limb Peak Discharge Timing Recession 
 2 5 2 5 2 5 2 5 
BOM   √      
CMA √ √ √ √ √ √   
ECMWF √ √ √  √ √   
NCEP √ √ √ √ √ √  √ 
JMA   √     √ 
UKMO  √ √  √    
CMC √ √ √ √ √ √  √ 
Multi-model √ √ √ √ √ √  √ 

Of further interest are false alarm rates, which will be analysed with respect to another location shown in 
figure 10 for a forecast with a two days lead time.  

Figure 10 shows a point at which all observations are clearly below the warning levels. In fact only a gently 
increasing hydrograph can be seen. The most important feature of this forecast is whether the alarm levels 
are exceeded. Only, BOM and JMA are staying well below all alert levels and only CMA exceeds the high 
alert level. CMA and UKMO have a high proportion of their forecast above the low alert level, whereas 
other ensemble systems seem to have a high percentage of forecasts below the lowest alert level.  

A larger number of ensembles exceed the lowest alert level at forecasts with a lead time of 5 days (see figure 
11). CMA, CMC and ECMWF all exceed the high alert level and only the BOM model stays significantly 
below. At the previous (‘flooding’) location BOM also under predicted discharge, however, this cannot be 
verified to be consistent property as we only investigate two locations. Not only hydrographs are used for 
flood warning, but also probability of exceedance maps. 
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Figure 10: The 10th and 90th percentile of discharge predictions of the different forecasts with a 2 day 
lead time are shown. The dashed horizontal lines show the four warning levels. 

 
Figure 11: The 10th and 90th percentile of discharge predictions of the different forecasts with a 5 day 
lead time are shown. The dashed horizontal lines show the four warning levels. 
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In Figure 12, the probability of exceedance of the highest warning level for each forecast centre for 13 
consecutive forecast dates is shown. This figure concentrates on the onset of the flood (24th of October) and 
therefore only shows the forecasts for the 11th of October to the 23rd of October. The exceedance levels 
indicate that most forecast ensembles predict flooding from the 14th of October to the 17th of October. The 
signal re-occurs from forecast to forecast, which provides the necessary reassurance. This type of persistency 
is one method used by EFAS [2] to decide whether warnings will be issued. From the 19th October onwards, 
the signal is very strong, although initially the flooding is predicted one day too early. This means that there 
is an efficient flood warning five days in advance and a possible warning 8 days in advance. The only 
ensemble prediction system used in the current EFAS set up is produced by ECMWF. No clear advantage 
over a warning based on ECMWF forecasts in comparison to a multi-model approach can be seen. A forecast 
based only on the ensemble of BOM would probably have led to no warning as the signal was inconsistent. 
Therefore, the use of multiple systems allows for more reassurance and could have led to a better forecast for 
this location and event.  

 
Figure 12: Percentage of forecasts exceeding the high thresholds from the 11th October to the 23rd 
October for all forecast systems.  
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In figure 13 the threshold exceedance for the location with no flood is shown. Some ensemble systems 
exceed the threshold as early as on the 14th, however, the percentage remains low and only a limited number 
of ensemble systems (3 out of 8) predict flooding. A forecast system based solely on the ECMWF model 
would have probably prompted any forecaster to increase the attention at this location. However, a 
comparison with the other forecasts would have prevented any issuing of an alert.  

 
Figure 13: Percentage of forecasts exceeding the high thresholds from the 11th October to the 23rd 
October for all forecast systems.  

5. Discussion 

This paper evaluates ensemble prediction systems of weather forecasts as input into a hydrological model to 
predict flooding of a specific case study. Different aspects of the forecasts are presented including the 
analysis of two specific locations in the area of interest. In table 5 the analysis is summarized by computing 
the rank of each forecast system for each aspect of the analysis. For example the ranks of each system 
according to the precipitation error shown in table 2 is computed and summarized in table 5. The lower a 
rank the better is the forecast system. Some ranks are not integers as they have been computed over a time 
series (the rank for each forecast has been computed at each lead time and then averaged). 
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Table 5: Summary of performance expressed in ranks according to each criteria 

Description BOM CMA NCEP JMA UKMO CMC ECMWF Multi-
model 

Detailed Description 

Quantile Error 
(precipitation) 

8 7 4 6 2 5 1 3 Rank according to absolute 
error in table 2 

RMSE (precipitation) 6 6.8 5.5 3.7 2.4 6.1 2.9 2.6 Average Rank over all lead 
times of RMSE in figure 4 

RPS (precipitation) 3.3 4.3 7.3 2.3 7.2 5.8 3.2 2.6 Average Rank over all lead 
times of RPS in figure 6 

Quantile Error 
(discharge) 

3 6 8 1 2 7 5 4 Rank according to absolute 
error in table 3 

RMSE (discharge) 7.1 4.1 5.8 5.6 3 6.4 1.5 2.5 Average Rank over all lead 
times of RMSE in figure 5 

RPS (discharge) 1.1 5.9 8 1.9 4.3 6.8 4 3 Average Rank over all lead 
times of RPS in figure 7 

Location 1 8 4 1 7 6 1 5 1 Ranked after the number of 
OKs in table 4 

Average 5.2 5.4 5.7 4 3.8 5.4 3.2 2.7 Average of above 

 

The average over all analysis is computed in the last line. It demonstrates that the Multi-model ensemble has 
the best average properties, followed by the forecast of ECMWF and UKMO. NCEP provides the worst 
average forecast. The increased quality achieved by the multi-model ensemble may well be explained by the 
fact that a flood forecast is investigated and thus the multi-model ensemble may provide a better 
approximation at the tails of the distribution. This is based on a set of criteria specific for this case study and 
might be different in more general cases.  

The case study does demonstrate the potential benefit of a multi-model forecasting system and has 
implications of future work. This includes the development of comprehensive framework which all 
uncertainties in this model cascade (numerical weather predictions, calibration of error models, factors of 
hydrological models and the merging of multi model ensembles) are treated in the same uncertainty 
framework. Each component of this cascade also needs additional attention. The error model of the 
numerical weather prediction models has to be tuned to hydrological applications. The uncertainty of all 
hydrological factors introduced. Various approaches to merge ensemble predictions tested.  

6. Conclusions 

None of the forecast centres (ECMWF, UKMO, JMA, NCEP, CMA, CMC, BOM and a multi-model 
ensemble) predict the distribution of precipitation observations exactly, with most centres exhibiting an over 
prediction at day nine. The distribution of discharge predictions for observations and forecasts is similar at 
the lower flown. All centres over predict discharge at high flow with the exception of BOM, which has the 
tendency to under predict at longer lead times. JMA, UKMO, ECMWF and the multi-model system all have 
an average error below 10% and thus can be seen as suitable EPS systems to predict this flood. 

The percentage of simulations above and below the 10th and 90th percentile of the predicted EPS distributions 
is very high for discharge and precipitation predictions especially at lead times below 5 days. In fact, only a 
small proportion of the observations is bracketed by the forecasts. UKMO, ECMWF and the multi-model 
ensemble perform comparably well in terms of root mean squared error of the ensemble mean discharge and 
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precipitation predictions. The multi-model ensemble also has a comparably low number of observations 
above and below the 10th and 90th percentile respectively. This analysis suggests that the multi-model 
ensemble is the optimal choice to improve discharge predictions. 

In this paper the forecasts for two individual locations at the rivers are shown. At the first location flooding 
has been observed. CMA, NCEP, JMA, CMC, ECMWF and the multi model ensemble predict the rising 
limb correctly. CMA, CMC and the multi model ensemble bracket the peak. NCEP and CMC perform very 
well at the recession limb. None of the models has been able to predict the recession for a lead time of 2 days 
adequately. It can be shown that one would not choose the forecasts by JMA and BOM for this location. 
Signal re-occurrence from one forecast to another is generally used by hydrologists to decide whether flood 
warnings will be issued (or retracted). All forecasts (apart from the one issued by BOM) would have lad to a 
flood warning about 8 days in advance.  

At the second location no flooding has been observed. Only, the forecasts by BOM and JMA are staying well 
below all alert levels and only CMA exceeds the high alert level. CMA and UKMO have a high proportion 
of their forecast above the low alert level, whereas other ensemble systems seem to have a high percentage of 
simulations below the lowest alert level. An analysis of persistency suggest that no warning would have been 
issued for this location if all forecasts would be considered (which is correct). 

In a final analysis, the different properties of the different forecasts have been ranked and an average rank 
computed. It demonstrates that the Multi-model ensemble has the best average properties, followed by the 
forecast of ECMWF and UKMO. NCEP provides the worst average forecast. The increased quality achieved 
by the multi-model ensemble may well be explained by the fact that a flood forecast is investigated and thus 
the multi-model ensemble may provide a better approximation at the tails of the distribution. This is based on 
a set of criteria specific for this case study and might be different in more general cases. 
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