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1. Introduction 
Background error covariances in the ECMWF analysis system are specified from two sources. The 
correlation structure is determined from the statistics of an ensemble of 4dVar assimilations and is static, 
whereas standard deviations of background error are determined using a cycling algorithm (Fisher, 1995). 
Recent attempts to change the background error covariances, either by re-calibrating the statistics using a 
more recent ensemble, or by changing the method used to estimate background error standard deviations, 
have shown a surprising lack of sensitivity to changes in the covariance specification. 

In this paper, we address this lack of sensitivity by considering simple one- and two-dimensional analogues 
of the assimilation process. 

2. Analysis Sensitivity to Changes in the Standard Deviation of   
Background Error 

The ECMWF analysis system has for many years used a cycling algorithm (Fisher, 1995) to determine the 
standard deviation of background errors that are used to define the background cost function, Jb. The 
algorithm consists of an initial estimate of analysis error standard deviation, based on the leading 
eigenvectors of the Hessian of the analysis cost function, followed by a simple inflation to account for the 
growth of error between one cycle and the next. The error growth model is due to Savijärvi (1995), and 
expresses the rate of change of forecast error standard deviation as: 

 ( ) 1d a b
dt
σ σσ

σ∞

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
 

Here, a and b are constants, and σ∞ is specified from climatology. For very small errors, the model produces 
linear growth at a rate determined by b. For somewhat larger errors, the growth is exponential and 
determined by a. As σ approaches σ∞, the growth rate decreases and errors saturate. The rate of error growth 
given by this model is independent of the flow. This is unrealistic. 

A small degree of flow dependence is introduced by the use of the 4dVar Hessian to estimate analysis error. 
However, the leading eigenvectors of the 4dVar Hessian largely identify areas of high data density. They are 
not markedly different from those of the 3dVar Hessian. 

A more significant source of flow-dependence in background error standard deviation is produced through 
the use of linearised versions of nonlinear balance equations in the analysis change of variable (Fisher, 
2003). The standard deviations of the balanced components of divergence, temperature and surface pressure 
are not directly specified. They are determined implicitly through the action of the balance operators on the 
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covariance matrix for vorticity. By using balance operators that are linearised about the background state, a 
significant degree of flow-dependence is achieved (see Isaksen’s paper in these proceedings). 

Despite these sources of flow-dependence in the current operational method for estimating background error 
standard deviation, it is believed that significantly improved estimates, that reflect the dynamical 
characteristics of the underlying flow, could be generated from the spread of an ensemble of analyses. An 
initial investigation of this possibility was conducted by Kucukkaraca and Fisher (2006), who investigated 
two case studies. More recently, longer assimilation experiments have been run. 

In the experiments presented here, each member of the analysis ensemble consisted of an independent run of 
the analysis-forecast system for a period of around 30 days. Ten members were used. For each member, 
random perturbations with the statistical characteristics of observation error were added to the observations. 
Spatially-correlated perturbations were used in the case of atmospheric motion vectors, using Bormann et 
al.’s (2003) estimate of spatial correlation. Perturbations for all other observations were spatially 
uncorrelated. In addition, sea-surface temperatures were perturbed to account for uncertainty in the 
prescribed field, and forecasts were perturbed (to account for model error) using a version of the stochastic 
backscatter scheme of Schutts (2004). Despite the attempt to add perturbations that account for the main 
sources of error, the analysis ensemble seriously underestimates the standard deviation of background error. 
For this reason, the spread of the ensemble must be inflated in order to produce a realistic estimate of the 
standard deviation of background error. A simple linear scaling by a factor of two has been used for the 
experiments discussed here. 

Figure 1 shows two estimates of the standard deviation of background error for zonal wind. The panel on the 
left shows the estimate produced using the cycling algorithm, as used in the current ECMWF operational 
analysis system. On the right is an estimate corresponding to twice the spread of an ensemble of analyses. 
The corresponding plots for the standard deviation of temperature are shown in Figure 2. 
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Figure 1: Zonal mean standard deviation of background error for zonal wind estimated using a cycling 
algorithm (left panel) and as twice the spread of an ensemble of analyses (right panel). The vertical axis 
corresponds to model level in the 91-level configuration of the ECMWF model. Pressure levels 50hPa, 
100hPa, 200hPa, 500hP and 850hPa correspond approximately to model levels 30, 39, 49, 64 and 77.  
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Figure 2: As Figure 1, but for temperature. 
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Clearly, the two methods for estimating the standard deviation of background error produce very different 
results. However, when analyses were run using the two estimates there was no discernable impact on the 
quality of the analyses, as measured by forecast scores. Figure 3 shows scores for forecasts run from the two 
sets of analyses, verified using the ECMWF operational analysis and averaged over 33 cases. There is a 
similarly small impact for the southern hemisphere (not shown), and a slightly larger (but still small) impact 
on forecast skill in the tropics. 

A second set of experiments also showed a surprising lack of sensitivity to the specification of background 
error standard deviations. In these experiments, the standard deviations of background error for all variables 
and at all model levels were multiplied by a scaling factor. As in the case above, the analysis system was 
cycled for more than a month. Figure 4 shows scores for forecasts run from analyses with scaling factors 
between 0.4 and 1.4. There is little difference in forecast skill between any of the forecasts, despite variation 
in background error standard deviations by a factor of 3.5. Figure 5 shows the fit to observations for analyses 
with two different scaling factor. As expected, analyses with larger standard deviations of background error 
draw more closely to the observations. However, there is little difference in the fit of the background fields 
to observations, despite the fact that they are produced from short forecasts initialized from analyses with 
very different fits to observations. 
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Figure 3: Forecast scores (anomaly correlation for 500hPa geopotential over the northern hemisphere) 
for forecasts run from analyses that used background error standard deviations estimated using a cycling 
algorithm (red curve), or estimated as twice (dashed blue curve) or 2.5 times (dotted black curve) the 
spread of an ensemble of analyses. 
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Figure 4: Forecast scores (anomaly correlation for500hPa geopotentia over the northern hemisphere) 
for forecasts launched from analyses in which the specified standard deviations of background error for 
all variables were multiplied by a factor “rednmc” ranging from 0.4 to 1.4. 
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Figure 5: Root-mean-square fit to radiosonde observations of zonal wind in the northern hemisphere for 
two sets of analyses. Solid curves show the fit of the background to the observations. Dotted curves show 
the fit of the analyses. Red curves correspond to analyses for which background error standard 
deviations were scaled by a factor 1.2. Black curves correspond to analyses for which background error 
standard deviations were scaled by a factor 0.6. The right hand column of  numbers show the total 
numbers of observations in the sample that generated the black curves. The column of red numbers shows 
the difference between the numbers of observations used to generate the red and black curves. 
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3. Sensitivity to Misspecified Background Error in a Simple Analogue 
To understand the results presented above, consider a simple zero-dimensional analogue. That is, we 
consider the estimation of a single scalar quantity, x, given an observation, y, and an a priori estimate xb. 

The optimal analysis may be written as ( ) ( )2 2 2 2
a b b o b ox x yσ σ σ σ− − − −= + + , where bσ  and oσ  are 

respectively the standard deviations of background and observation error. The standard deviation of analysis 

error in this case is ( ) 1/ 2* 2 2
a b oσ σ σ

−− −= + . 

Let us consider the case in which the standard deviation of background error is misspecified as bσ . It is easy 

to show (see e.g. Daley 1991, section 4.9) that the standard deviation of analysis error is given by: 

4 2 4 2

2 2
b o o b

a
o b

σ σ σ σσ
σ σ

+
=

+
 

Figure 6 shows the ratio of the standard deviation of analysis error to its optimal value, as a function of 

b bσ σ and o bσ σ . The largest degradations in the quality of the analysis occur when accurate information 

is not drawn to. The top left corner of the figure corresponds to the case of accurate observations and too-
small background error standard deviation. The bottom left of the figure corresponds to the case of an 
accurate background and too-large background error standard deviation. Note, in particular, that if the 
background is more accurate than the observations (i.e. σo/σb>1), it is better to underestimate rather than 
overestimate σb. 
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Figure 6: Ratio of actual to optimal standard deviation of analysis error for a zero-dimensional analysis 
in which the background error standard deviation is misspecified. The horizontal axis represents the 
specified background error standard deviation, divided by its true value. The vertical axis represents the 
observation error standard deviation divided by the true standard deviation of background error. 

For a range of values of b bσ σ between about1 2  and 2 , the analysis is degraded by less than 5%. It is 

interesting to translate this degradation into a corresponding loss of forecast skill. Let us suppose that 
forecast error increases exponentially with a doubling time TD. Consider two forecasts, A and B, started from 
analyses with standard deviations of analysis error a and b. Suppose that b<a. After a time t, forecast A will 
reach a level of forecast error /2 Dt T

f aσ = . Forecast B, which was launched from a more accurate analysis, 
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will reach the same level of forecast skill somewhat later, at time t+Δt. That is, ( ) / /2 2D Dt t T t Tb a+Δ = . Solving 

for Δt gives: ( ) ( )ln ln 2Dt T a bΔ = . Table 1 lists values of  Δt for a range of ratios of analysis error 

standard deviation, a/b. Comparing Figure 1 and Table 1, we see that, for this simple model, a factor-of-two 

range of standard deviations around the true value (i.e. b bσ σ between 1 2  and 2 ) results in a loss of 

forecast skill of only around 2½ hours. 

a/b Δt (hours) 
1.02 1.03 
1.05 2.53 
1.10 4.95 
1.20 9.47 

Table 1: Loss of forecast skill (hours) as a function of degradation in analysis quality, assuming a 
forecast-error doubling time of 36 hours. 

4. The Effect of Misspecified Statistics in a One-Dimensional Analogue 
Seaman (1983) considered the effect of misspecified analysis statistics in an idealised two-dimensional 
analysis system consisting of 42 grid-points arranged in a 7×6 rectangular array with a grid spacing of 
200km, and for an observing network corresponding to a subset of the Australian surface synoptic network. 
Two parameters were varied around their true values, and the corresponding degradation in analysis quality 
calculated. The parameters were the length scale of background error correlation, for which the true value 
was taken to be L=500km, and the ratio of observation to background error standard deviation, for which the 
true value was assumed to be 0.1o bσ σ = . Daley (1991, figure 4.14) reproduces Seaman’s (op. cit.) figure 

2a, showing the area-averaged degradation in analysis quality. 

The values of L and o bσ σ assumed by Seaman are unrealistic for modern data assimilation systems. To 

investigate the effect of varying these parameters in a modern system, a simple one-dimensional analysis 
system was constructed. The system consists of a cyclic one-dimensional domain of 10,000km, with 
observations randomly distributed over the domain. Background errors are assumed to be spatially correlated 
with a homogeneous Gaussian correlation function with length scale L=500km. Two configurations were 
considered: an “ancient” system, for which 0.1o bσ σ = , and the mean distance between observations was 

500km; and a “modern” system, for which 1o bσ σ =  and the mean distance between observations was 

100km. 

Figure 7 shows the mean analysis error standard deviation, normalised by the background error standard 
error deviation, for the “ancient” system. The figure should be compared with Seaman’s figure 2a (Daley’s 
figure 4.14), which it resembles closely. This suggests that the choice of a one-dimensional, rather than two-
dimensional, domain does not greatly modify the results. The large black dot shows the position of the 
minimum of the analysis error standard deviation, and the tips of the arrows correspond to factors of 

2 increases and decreases in the parameters. Changes in the standard deviation of observation error over a 
factor-of-two range result in about a 1.2% degradation in the analysis, whereas a corresponding range of 
values of length scale results in a much larger change in analysis quality. (Note that Seaman considered σb to 
be correct, with σo misspecified. However, since a linear analysis depends only on the ratio of σo to σb, we 
may equally consider σo to be fixed and σb to be varied.) 
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The corresponding figure for the “modern” system is shown in Figure 8. The analysis is less sensitive to 
changes in correlation length scale, but more sensitive to changes in σo/σb. The change of around 6% in the 
standard deviation of analysis error for a factor-of-two range of σo/σb corresponds well with the results for 
the zero-dimensional analogue shown in Figure 6. 
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~18% degradation

~1.2% degradation

0.343

~18% degradation

~1.2% degradation

 
Figure 7: Ratio of mean analysis error to background error for the "ancient" system, with the  
parameters used by Seaman (1983). 
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Figure 8: As Figure 7, but for the “modern” system. 

Two mixed configurations of the system were also evaluated, corresponding to “modern” observation 
separation combined with “ancient” σo/σb and vice versa. The results are summarised in Table 2. Increased 
accuracy of the background (i.e. decreased σo/σb) results in increased sensitivity to σo/σb. However, the 
sensitivity remains less than 6%. Increased density of observations results in increased sensitivity to errors in 
both parameters. (Note that the extreme sensitivity of 62% for the case of an accurate background and sparse 
observations corresponds to an unrealistic system. In this case, for correctly specified parameters, the 
normalised analysis error is around 0.06. That is, errors in the background are around 17 times larger than 
errors in the analysis.) 
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 Degradation due to 
misspecified σb 

Degradation due to 
misspecified L 

Poor background, 
sparse observations 1.2% 18% 

Poor background, 
dense observations 2.5% 62% 

Accurate 
background, sparse 
observations 

4.8% 2.4% 

Accurate 
background, dense 
observations 

6% 7% 

Table 2: The effect of misspecified statistics on four configurations of the one-dimensional analysis 
system. Configurations denoted “poor background” and “accurate background” correspond to true 
values of σo/σb of 0.1 and 1, respectively. Configurations denoted “sparse observations” and “dense 
observations” correspond to mean distances between observations of 500km and 100km, respectively. 
Degadations are given as the larger of the two increases in σa/σb resulting from an increase and a 
decrease by a factor of 2  in the value of the parameter. 

Next, suppose that the true length scale of background error correlation is in the “modern” configuration is 
100km, rather than 500km. The effect (not shown) of this reduction in length scale is to slightly reduce the 
sensitivity to changes in σo/σb from 6% to 4.6%, as measured by the maximum degradation in analysis error 

for a 2 increase or decrease. The sensitivity to a corresponding relative change in specified length scale is 
reduced from 7% to 1.9%. Finally, suppose that the true value of σo/σb is 2. That is, the background is more 
accurate than the observations. In this case, the sensitivity of the “modern” configuration (assuming a true 
length scale of background error correlation of 500km) is 7% for changes in σo/σb, and 3% for changes in L. 

5. Conclusions 
Radical changes to the standard deviations of background error used to construct the background covariance 
model in the ECMWF analysis system result in surprisingly little effect on the quality of the analyses, and of 
forecasts launched from them. Investigations with very simple zero- and one-dimensional analogues confirm 
this result, and suggest that for a factor-of-two range of background error standard deviation around the true 
value, the expected analysis error remains within a few percent of its optimal value, resulting in a reduction 
of forecast skill of only a few hours. 
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