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Abstract 
One of the crucial aspects of the design of an ensemble prediction system is the definition of the ensemble of initial 
states. This work investigates the use of singular vectors, an ensemble of analyses, and a combination of the two types 
of perturbations in the ECMWF operational ensemble prediction system. First, the similarity between perturbations 
generated using initial-time singular vectors (SVs) and analyses from an ensemble data assimilation (EDA) system is 
assessed. Results show that the EDA perturbations are less localized geographically and have a better coverage of the 
tropics. EDA perturbations have also smaller scales than SV-based perturbations, and have a less evident vertical tilt 
with height, which explains why they grow less with the forecast time. Then, the use of EDA-based perturbations in the 
ECMWF ensemble prediction system is studied. Results indicate that if used alone, EDA-based perturbations lead to an 
under-dispersive and less skilful ensemble then one based on initial-time SVs only. Combining the EDA and the initial-
time SVs gives a system with a better agreement between ensemble spread and the error of the ensemble-mean, a 
smaller ensemble-mean error and more skilful probabilistic forecasts than in the current operational system based on 
initial-time and evolved SVs.  

1. Introduction  
One of the crucial aspects of the design of an ensemble prediction system is the definition of the ensemble of 
initial states. At the European Centre for Medium-Range Weather Forecasts (ECMWF, Molteni et al. 1996, 
Buizza et al. 2007), the initial time probability density function is represented by initial conditions generated 
by adding to and subtracting from the unperturbed analysis 25 perturbations defined by leading singular 
vectors (SVs) of the model tangent forward and adjoint version (Buizza and Palmer 1995), with the 
unperturbed analysis defined by the ECMWF 4-dimensional variational data assimilation system (Rabier et 
al. 2000). The 50 initial perturbations generated using the leading singular vectors, i.e. the phase-space 
directions of maximum growth measured by total energy, are scaled to have amplitude comparable to 
analysis error estimates and are designed to represent analysis error components along these directions of 
maximum growth. Ehrendorfer and Tribbia (1997) have shown that if the objective of an ensemble system is 
the optimal prediction of the forecast error covariance matrix (optimal in the sense of maximum possible 
fraction of forecast error variance), then the singular vectors constructed using covariance information at the 
initial time constitute the most efficient means for predicting the forecast error covariance matrix.  

At the National Center for Environmental Prediction, initial perturbations are defined using an Ensemble 
Transform method (Wei et al 2008), and at the Chinese Meteorological Administration and the Korean 
Meteorological Administration initial perturbations are defined using bred-vectors instead (Toth and Kalnay 
1993, 1997). At the Meteorological Service of Canada (MSC), a system simulation approach (Houtekamer et 
al. 1996) is used to generate the ensemble of initial perturbations, where a number of parallel data 
assimilation cycles are run randomly perturbing the observations and using different parameterization 
schemes for some physical processes in each run. The ensemble of initial states generated by the different 
data assimilation cycles defines the initial conditions of the Canadian ensemble system.  

Several authors have compared the strengths and weaknesses of using a selective or a non-selective approach 
in ensemble prediction to simulate initial uncertainties. These studies can be classified in three groups 
depending on the experimental environment that has been followed. The first group of simple-but-same-
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model environment studies uses simple, low-dimensional systems, often under ‘perfect’ model assumptions. 
These studies have the advantage of comparing ensembles obtained using different methods but the same 
forecast model, but suffer from the fact that these model are very simple, and under-represent the complexity 
of the atmospheric system. Furthermore, these studies often use synthetic data (i.e. data extracted from a 
model run rather than generated using real observations) as observation and for verification, a fact that limits 
the validity of their conclusions for real time applications. The second group of complex-but-different-model 
environment studies compares operational ensemble systems, using for the verification analyses from state-
of-the-art data-assimilation systems fed with real observations. Although these studies give a realistic picture 
of the status of ensemble prediction, and of the relative strengths and weaknesses of the different systems, 
they cannot be used to draw any conclusion on the effectiveness of the different methods used to simulate the 
initial uncertainties, since they compare ensembles not only based on different approaches but also run with 
different models. The third group of complex-and-same-model environment studies tries to combine the 
merits of the two groups mentioned above, and test different perturbation strategies using only one state-of-
the-art model, and for the verification an analysis obtained assimilating real observations with a state-of-the-
art data assimilation system.  

Among the first simple-but-same-model environment group, Anderson (1997) using the 3-parameter Lorenz 
(1963)’s system compared the use of dynamically constrained (SVs, bred vectors) or unconstrained 
perturbations, and concluded that unconstrained (random) perturbations produced more skilful systems. 
Using a more complex quasi-geostrophic model, Houtekamer and Derome (1995) found little differences 
between ensembles based on bred vectors, SVs or the Canadian observation perturbation method, while 
Hamill et al (2000) concluded that the observation perturbation method provides more accurate forecasts 
than the other two. More recently, Bowler (2006), using a low-order model developed by Lorenz (Lorenz 
1996), concluded that using an ensemble Kalman filter approach gives a better ensemble than bred vectors or 
SVs. Descamps and Talagrand (2007), using the Lorenz (1996) model and the 3-level quasi-geostrophic 
model developed by Marshall and Molteni (1993) with synthetic data, compared the performance of 
ensembles based on SVs, bred vectors, Ensemble Kalman filter and Ensemble Transform Kalman filter, and 
concluded that the two latter outperform the two former ensembles.  

Among the second complex-but-different-model environment group, Buizza et al (2005) compared the 
performance of the ECMWF, NCEP and Canadian ensemble systems for one season. They showed that the 
ECMWF ensemble system was performing better than the other two ensembles, but could not clearly 
estimate the relative importance of using the SV method instead of the bred vectors used at NCEP, or the 
Canadian perturbation observation approach. They concluded that “the performance of an ensemble 
prediction system strongly depends on the quality of the data-assimilation system used to create the 
unperturbed (best) initial condition and the numerical model used to generate the forecasts”. The reader is 
referred to Park et al (2008) for a similar, very recent work that compares the performance of operational 
ensemble systems sharing data within the TIGGE (the THORPEX interactive Grand Global Ensemble) 
project.  

Magnusson et al (2008) and Wei et al (2008) are examples of the third complex-and-same-model 
environment group. Wei et al (2008) compare the performance of the NCEP ensemble system using bred 
vectors, ensemble transform and ensemble transform with re-scaling methods. Their work concluded that the 
ensemble transformed method with re-scaling outperformed the other two methods: this method replaced the 
bred vectors in the NCEP operational ensemble system on 30 May 2006. Magnusson et al (2008) compare 
the performance of three ensembles run with the ECMWF ensemble system at TL255L40 resolution with 
initial perturbations defined using SVs and two types of bred vectors. They conclude that over the extra-
tropics the SV method gives a slightly better performance, but over the tropics the breeding method performs 
better, due to the fact that the SVs sample only a limited region of the tropical band.  
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The work presented here is to be classified within this group of complex-and-same-model environment 
studies. It aims to investigate whether the performance of the ECMWF ensemble prediction system (EPS) 
can be improved by using alternative methods to generate the set of perturbed initial conditions. More 
specifically, it discusses the use of a set of perturbations generated using an Ensemble Data Assimilation 
(EDA, Isaksen et al 2007) system in the ECMWF ensemble prediction system. Following Houtekamer et al 
(1996, 2005), the ensemble of analyses has been generated by randomly perturbing the observations in a 
manner consistent with observation error statistics, and by using stochastic physics to simulate the effect of 
model uncertainties.  

The three key questions that this communication is addressing are the following: 

• How similar/different are EDA-based and SV-based initial perturbations? 

• What is the difference in skill in an ensemble using EDA-perturbations only and an ensemble using 
SV-perturbations only? 

• Can the skill of the EPS be improved by combining EDA- and SV-based perturbations?  

These questions are addressed considering experiments performed for a 45-day period using a TL399L91 
version of the ECMWF 4-dimensional variational data assimilation system, and a 10-day TL399L62 version 
of the EPS. In section 2, the methodology and experimental set-up are presented. In section 3, the 
characteristics of EDA-based initial perturbations are compared with the characteristics of SV-based 
perturbations. In section 4, the potential use of the ensemble of analyses to generate the EPS initial 
perturbations is discussed. Finally, some conclusions are drawn, and future work is discussed in section 5. 

2. Methodology, ensemble definition and experimental set-up 
A data assimilation system produces an optimal estimate of the true state of the atmosphere, called the 
analysis, given as input a first-guess and a set of observations. Schematically,  

 0 1 0 1( , ) [ ( , ); ( , )]aa d t D fg d t t t o d t t t= ≤ ≤ ≤ ≤  (1) 

where a(d,ta) denotes the analysis of day d at time ta, fg(d,t) the first guess, o(d,t) the set of observations at 
time t, and D[..] the 4D-Var assimilation process. In a 4-dimensional variational (4D-Var) assimilation 
system, the input spans a time window t0≤t≤ t1. For each forecast time t, the first guess is given by the time 
integration of the model equations from the previous analysis ta 
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where P(d,τ) represents the tendency due to the parameterized physical processes (e.g. radiation, moist 
processes, turbulence), A(d,τ) is the tendency due to all the other processes, λj(d,τ) denotes the model 
perturbation added by the stochastic kinetic energy backscatter scheme (Berner et al 2008), and a(d,ta) 
denotes the initial condition. Ensembles of 4D-Var analyses have been generated by randomly perturbing the 
observations [term o(d,t) in Eq. (1)] in each single analysis: 
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Ensembles of analyses with 10 perturbed members have been generated with a TL399L91 version, i.e. with 
spectral triangular truncation T399 with linear grid, and 91 vertical levels of the ECMWF model (Isaksen et 
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al 2007). Experiments have been performed with a 12-hour assimilation window, from the 14th of September 
to the 31st of October 2006. For each observation apart for cloud-track winds, perturbations have been 
defined by randomly sampling a Gaussian distribution with zero mean and standard deviation defined by the 
observation error standard deviation. For cloud-track winds observations, perturbations are horizontally 
correlated (Bormann et al 2003). Sea-surface temperature fields are also perturbed, with correlated patterns 
as currently done in the ECMWF seasonal ensemble system (Vialard et al 2005). At the first assimilation 
cycle, the randomly-perturbed observations are the only source of divergence between the perturbed 
analyses, while for the subsequent cycles differences in the first-guess fields also contribute to the analyses 
spread. 

Ensemble forecasts have been run every other day from the 22nd of September to the 30th of October, with 
forecasts generated with the same model (cycle 31r2, with TL399L62 resolution), and with stochastic 
perturbations added to the physical tendencies to simulate model error uncertainties. Schematically, each 
ensemble forecast is defined by the time integration of the (stochastically perturbed) equations 
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where δj is a random number that depends on the forecast time, the grid-point latitude λ and longitude φ (see 
Buizza et al 1999a for a detailed description of the scheme). 

In the ensembles, initial uncertainties have been simulated using 48-hour total energy singular vectors, 
vectors that identify phase-space directions with maximum growth over a 48-hour optimisation time interval 
measured using a total energy norm. Since June 2004 (Leutbecher 2005), the operational day d ensemble has 
been using ‘forecast’ SVs, i.e. SVs computed between the +6h and the +54h trajectory, instead of between 
the initial and +48h trajectory. In the operational ensemble, for each initial date d, two sets of singular 
vectors are used:  

• the initial singular vectors, defined as the SVs at initial-time growing for 48h in the future SV(d,0) 
(more precisely, these are the initial-time SVs growing between the +6h and the +54h trajectory 
started at day d-6h), and 

• the evolved singular vectors, defined as the SVs at forecast time +48h growing from date (d-48h) for 
48-hour in the future, SV(d-48h,48h) (more precisely, these are the SVs at +48h growing between the 
+6h and the +54h trajectory started at day d-54h) 

Figure 1 is a schematic illustration of the configuration used in the ECMWF operational ensemble system at 
the time of writing (February 2008). The initial-time singular vectors were introduced at the time of 
implementation of the ECMWF EPS to simulate the effect of perturbations growing during the forecast time 
(Buizza and Palmer 1995, Molteni et al 1996). Then, in March 1998, the evolved singular vectors were 
added to improve the simulation of uncertainties growing during the data assimilation cycle (Barkmeijer et al 
1999). Up to January 2002, the initial and evolved SVs covered only the extra-tropics (more precisely, their 
final-time total energy norm was maximized north of 30° N and south of 30° S). In January 2002, initial-time 
targeted tropical SVs were added to improve the prediction of tropical storms (Barkmeijer et al 2001, Puri et 
al 2001): these tropical SVs are computed only in some selected regions and do not cover the whole tropical 
band. The reader is referred to Palmer et al (2007) for a review of the development of the ECMWF ensemble 
prediction system from 1992 to 2007. 
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Figure 1: Schematic of the configuration used to generate the initial perturbations of the ECMWF ensemble at 
00UTC of day d. The 12h-long black and grey boxes between 9-21UTC and 21-9UTC mark the times during 
which the 12-hour 4D-Var runs; the 6h-long green and grey boxes between 21-03UTC and 9-15UTC mark the 
times during which the early-delivery 6h 4D-Var analysis runs. The unperturbed analysis at 00UTC of day d is 
defined by the 6h 4D-Var analysis generated by the early-delivery suite (green box). The initial perturbations 
are generated combining the evolved singular vectors SV(d-48h,48h) (red vectors) computed at 00UTC of day 
(d-2), and initial-time singular vectors SV(d,0) (blue vectors) computed at 00UTC of day d. Note that (see text 
for more details) the trajectory along which the SV(d,0) grow is between the T+6h and the T+54h forecasts 
started at 18UTC of day (d-1), and the trajectory along which SV(d-48h,48h) grow is between the T+6h and the 
T+54h forecasts started at 18UTC of day (d-3). 

Each ensemble initial perturbation is defined by a combination of the initial-time and the evolved SVs 
computed over different regions: extra-tropical Northern Hemisphere (north of 30°N), extra-tropical 
Southern Hemisphere (south of 30°S), and between 1 and 6 selected regions targeted on tropical cyclones. 
Once computed they are combined and re-scaled to have initial amplitude comparable to the analyses error 
estimate given by the high-resolution data-assimilation system. The reader is referred to Leutbecher and 
Palmer (2008) and Ehrendorfer and Beck (2003) for more details on the Gaussian sampling method used to 
combine and re-scale the SVs in the current operational ensemble system. 

Ensemble members have been integrated starting from perturbed initial condition ej(d,ta), defined (a) using 
initial T42L62 singular vectors only, (b) as (a) plus evolved singular vectors (as it is currently done in the 
ECMWF operational ensemble system), (c) an ensemble of analyses only, or a (d) combination of singular 
vectors and perturbed analyses: 
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where s=1,S denotes the different areas for which SVs are computed. 

In the experiments discussed in this work, the unperturbed analysis e0(d,ta) has been defined as the TL799L91 
analysis interpolated to the TL399L62 resolution. Furthermore, each TL399L62 perturbed analysis PAm(d,ta) 
has been generated by adding to the unperturbed analysis e0(d,ta) the difference between the +6h forecast 
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started from the TL399L62 j-th analysis valid for (d-6h), aj(d-6h,6h) and the +6h forecast from unperturbed 
analysis e0(d-6h,6h): 

 0 0( , ) ( , ) [ ( 6 ,6 ) ( 6 ,6 )]m a a mPA d t e d t a d h h a d h h= + − − −  (6) 

Each ensemble of analyses includes 10 perturbed analyses and an unperturbed one (due to limited computer 
resources, the number of perturbed analyses could not have been extended to more than 10). For the first 5 
perturbed forecasts, perturbed analysis number 1 is used, m(j)=1 for j=1,5, and in general 

1( ) 1
5

jm j −⎡ ⎤= + ⎢ ⎥⎣ ⎦
. 

To understand the effect on ensemble prediction of perturbations defined using SVs or perturbed analyses, 
and to investigate the potential use of perturbed analyses in ensemble prediction, the following four types of 
ensembles are compared: 

• SVINI, with initial perturbations defined using only initial SVs, see Eq. (5.a) 

• EDA, with initial perturbations defined using only perturbed analyses, see Eq. (5.c) 

• EDA-SVINI, with initial perturbations defined using perturbed analyses and initial-time SVs, see Eq. 
(5.d) 

• SVINI-EVO, with initial perturbations defined using initial and evolved SVs, see Eq. (5.b) 

Figures 1 and 2 are schematic illustrations of the configuration used in the SVINI-EVO (which corresponds 
to the ECMWF operational ensemble system at the time of writing) and the EDA ensembles. The SVINI 
configuration is as the SVINI-EVO but without the evolved SVs, while the EDA-SVINI configuration is a 
combination of the SVINI and the EDA.  

 
Figure 2: Schematic of the configuration used to generate the ensemble of perturbed analyses at 00UTC of day 
d. The 12h-long black and grey boxes between 9-21UTC and 21-9UTC mark the times during which the 12-hour 
4D-Var runs; the 6h-long green and grey boxes between 21-03UTC and 9-15UTC mark the times during which 
the early-delivery 6h 4D-Var analysis runs. The unperturbed analysis at 00UTC of day d is defined by the 6h 
4D-Var analysis generated by the early-delivery suite (green box). The members of the ensemble of analyses 
used at 00UTC of day d (blue box with black lines) are generated by 12h 4D-Var cycles running between 9UTC 
and 21UTC of day (d-1). 

All ensemble forecasts have been run for 10 days and with 50 perturbed and one unperturbed (the control) 
member. Most of the results presented in this work refer to the 500 hPa geopotential height and the 850 hPa 
temperature over the Northern Hemisphere extra-tropics (North of 20ºN), and the 850 hPa temperature and 
longitudinal wind component over the tropics (from 20ºS to 20ºN).  
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3. Characteristics of EDA- and SV-based perturbations 
Figure 3 shows two perturbations at initial time, one from the SVINI and one from the EDA ensembles, for 
the forecasts started at 12 UTC on the 22nd of September 2006, in terms of temperature at 700 hPa. The 
SVINI and EDA perturbations have similar local maxima in temperature, but the EDA perturbations have 
larger local maxima in wind (not shown). The SVINI perturbations are more localized in the areas identified 
by the SVs, and have only a very small component in the tropical band (by construction). The EDA 
perturbation has smaller scales, and extends also in the tropics. The localization of the SVINI perturbation 
can be seen also in the vertical cross sections shown in Fig. 4; note that from this figure the vertical tilt 
typical of SV perturbations growing via baroclinic processes can be detected. Figure 4 confirms that the 
EDA perturbations are less localized also vertically, and shows that they are characterized by a less evident 
tilt.  

These different characteristics of SV- and EDA-based perturbations are confirmed by the comparison of 
average values (computed over 20 cases) of the squared ensemble spread measured around the control 
forecast (defined as the average squared-difference between each perturbation and the control forecast). As 
shown in the top panels of Fig. 5, at initial time SVINI perturbations are confined to total wave-numbers 
smaller than 42 (by construction), with a similar amplitude to the EDA perturbations in terms of 500 hPa  
 

 
Figure 3: Initial-time perturbations of the forecast started at 12 UTC on the 22nd of September 2006 for the 
SVINI (top panel) and the EDA (bottom panel) ensembles. The solid lines show the control (con) initial state in 
terms of geopotential height, while shadings show the member-5 perturbations, i.e. the difference (mem5-con), 
in terms of temperature at 700 hPa. Contour interval is 4 dam for geopotential height and -2/-1/-0.5/-
0.25/0.25/0.5/1/2/4 degrees for perturbation temperature. 
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Figure 4: Initial-time perturbations of the forecast started at 12 UTC on the 22nd of September 2006 for the 
SVINI (top panel) and the EDA (bottom panel) ensembles. The solid lines show the control (con) initial state in 
terms of temperature, and the shadings show the member-5 perturbations, i.e. the difference (mem5-con), in 
terms of temperature for a vertical cross section at 30°N latitude. Contour interval is 2 degrees for the control 
temperature and -2/-1/-0.5/-0.25/0.25/0.5/1/2/4 degrees for perturbation temperature. 

 
Figure 5: Average (20 cases) variance of the SVINI ensemble (red lines) and the EDA ensemble (blue lines) at 
initial time (top panels, multiplied by 500) and at T+120h (bottom panels) as a function of total wave number, 
computed over the Northern Hemisphere extra-tropics (north of 30°N) for the 500 hPa geopotential height (left 
panels) and the 850 hPa temperature (right panels). As reference for forecast times, the bottom panels show the 
average spectra of the control forecast error (black lines). 
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geopotential height but with a much smaller amplitude in terms of 850 hPa temperature. At forecast step 
T+120h (Fig. 5, bottom panels) the spread of the EDA ensemble is about half the spread of the SVINI 
ensemble. The comparison of the ensemble spread with the control error (black lines in the bottom panels of 
Fig. 5) indicates that at T+120h the SVINI spread is very close to the control error, while the EDA spread is 
much smaller. More comments on the level of ensemble spread and on perturbation growth in the different 
ensembles are reported in section 4. 

Following Buizza (1998), to quantify the differences between the initial perturbations of the four types of 
ensembles, the similarity index and the forecast-error projection index have been computed. First, for each 
ensemble, a set of 50 ortho-normal vectors has been generated using the 50 initial perturbations defined by 
the difference between the 50 perturbed and the unperturbed (control) initial states applying a Gram-Schmidt 
orthogonalization procedure. Then, for any two ensembles X and Y, the similarity index between the two 
ortho-normal bases at initial time vX,j(d,0) and vY,j(d,t) has been computed to measure the degree of similarity 
between the two sets of initial-time perturbations: 
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where <..;..> denotes the Euclidean inner product. 

The similarity index is 1 for ensembles that span exactly the same sub-space of the forecast phase-space, 
while it is 0 for orthogonal sub-spaces. 

Finally, the forecast error projection index, defined as the percentage of control forecast error explained by 
each ortho-normal basis, has been computed: 
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where a(d+t) is the TL799L91 high-resolution analysis interpolated to the ensemble resolution (TL399L62). 
The projection index is 1 if the control forecast error is confined to the subspace of the forecast phase-space 
spanned by the X basis, while it is 0 if it is confined to an orthogonal one. 

Similarity indices between the different sub-spaces have been computed up to the forecast time for which 
SVs are optimized, i.e. 48 hours. Figure 6 shows the 20-case average similarity indices computed for all 
possible couples of experiments for three variables: 500 hPa geopotential heights and 850 hPa temperatures 
over the Northern Hemisphere, and the 850 hPa temperatures over the tropics. Results show that in the early 
forecast range SVINI and EDA, and SVINI-EVO and EDA perturbations are the most different. This 
confirms the differences detected in the comparison of single perturbations of the SVINI and the EDA 
ensembles discussed above. Note also that the similarity between SVINI and EDA-SVINI is close to the 
similarity between SVINI and SVINI-EVO: this indicates that adding to SVINI perturbations a set of 
perturbations defined either by the evolved singular vectors or the perturbed analysis has a similar impact on 
the dimensionality of the sub-space spanned by the initial perturbations. Note that over the Northern 
Hemisphere the EDA-SVINI perturbations are more similar to SVINI perturbation than to EDA 
perturbations: this is not surprising given the fact that there are only 10 different perturbed analyses. But note 
that the reverse is true over the tropics: again, this is not surprising given the fact that only a limited region of 
the tropics is sampled by the tropical targeted SVs.  
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Figure 6: Average (20 cases) similarity index between different sets of ortho-normal bases defined using SVINI, 
SVINI-EVO, EDA and EDA-SVINI perturbations, computed for the 500 hPa geopotential height over the 
Northern Hemisphere (top panel), the 850 hPa temperature over the Northern Hemisphere (middle panel), and 
the 850 hPa temperature over the tropics (bottom panel).  

Figure 7 shows the 20-case average (control error) projection indices for all four ensembles for up to T+48h. 
Over the Northern Hemisphere, the EDA perturbations have the second largest projection indices up to 
T+36h, but thereafter the two SVINI and SVINI-EVO perturbations have the second largest values. The fact 
that the SV-based perturbations are less optimal than EDA-based perturbations up to T+36h is not surprising, 
given the fact that the SVs are optimized for a 48-hour time interval. Over the tropics, the EDA perturbations 
have the second largest projection indices for the whole forecast range. The fact that for this region the SV-
based perturbations are less optimal than the EDA-based perturbations is a consequence of the fact that by 
construction tropical SVs are computed only for some selected regions. Overall, the EDA-SVINI 
perturbations have the largest index over both the Northern Hemisphere and the tropics, suggesting that 
combining these two sets of perturbations could lead to an ensemble system spanning a subspace that 
includes a larger component of the control forecast error.  
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Figure 7: Average (20 cases) Percentage of control forecast error explained by ortho-normal bases defined 
using SVINI, SVINI-EVO, EDA and EDA-SVINI perturbations, computed for the 500 hPa geopotential height 
over the Northern Hemisphere (top panel), the 850 hPa temperature over the Northern Hemisphere (middle 
panel), and the 850 hPa temperature over the tropics (bottom panel). 

In conclusion, the results discussed in this section indicates first of all that SV- and EDA-based perturbations 
have different characteristics (coverage, scale, tilt, amplitude) and span different regions of the phase-space 
of the system, and second that the subspace spanned by combined SVINI-EDA perturbations explains a 
larger percentage of control forecast error than if used individually. In the next section, the characteristics of 
the four ensembles (SVINI, EDA, SVINI-EVO and EDA-SVINI) are discussed.  
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4. Use of SV- and EDA-based perturbations in the ECMWF EPS 
The performances of the SVINI, EDA, EDA-SVINI and SVINI-EVO ensembles have been compared in 
terms of ensemble spread measured by the ensemble standard deviation (STD, the average distance of an 
ensemble member from the ensemble-mean), root-mean-square-error (RMSE) for the ensemble-mean and 
the ranked probability skill score (RPSS) for probabilistic predictions. The RPSS has been computed using 
ten climatologically equally likely categories, with skill computed with respect to a climatological 
distribution (Jung and Leutbecher 2008). Attention has been focused on the 500 hPa geopotential height and 
the 850 hPa temperature over Northern Hemisphere, and the 850 hPa temperature and zonal-wind component 
over the tropics. When the average performance of two ensemble systems is compared, the [0.05,0.95] 
confidence interval of the difference between the scores of the two systems has been estimated using a boot-
strapping technique (in figures that show the average scores of two systems, the confidence intervals are 
shown by bars drawn around one of the two score curves). 

Figures 8 and 9 show the average RMSE of the ensemble-mean forecast and the ensemble spread (measured 
by the ensemble STD) for the 850 hPa temperature over the Northern Hemisphere and the tropics. Over the 
Northern Hemisphere, results show that after forecast step T+48h the STD of the EDA ensemble is ~50% 
smaller than the RMSE of the ensemble-mean, while for the other three ensembles the STD and the RMSE 
of the ensemble-mean are very close. Over the tropics, by contrast, the spread of the EDA and the EDA-
SVINI ensembles is only ~25% smaller than the RMSE of the ensemble-mean, while the STD of the SVINI 
and the SVINI-EVO ensembles is ~50% smaller than the RMSE of the ensemble mean. These average 
results are in agreement with the results presented in section 3 for one case. In terms of RMSE of the 
ensemble-mean, over the Northern Hemisphere the four ensembles are equivalent up to forecast step 
T+120h, but thereafter the EDA ensemble-mean has the largest values (with differences statistically 
significant after forecast step T+108h). Over the tropics, the ensemble-mean of the EDA and the EDA-
SVINI ensembles is the smallest between forecast steps T+48h and T+120h. These results are confirmed by 
Figures 10-11, which show the STD and the RMSE of the ensemble-mean for the 500 hPa geopotential 
height over the Northern Hemisphere and the 850 hPa zonal-wind component over the tropics. 

Figure 12 shows the average RPSS of probabilistic forecasts of the 850 hPa temperature over the Northern 
Hemisphere and the tropics, and Fig. 13 the average RPSS of probabilistic forecasts of the 500 hPa 
geopotential height over the Northern Hemisphere and the 850 hPa zonal-wind component over the tropics. 
Over the Northern Hemisphere, the EDA ensemble has a statistically significant lower skill than the SVINI 
ensemble, and the EDA-SVINI and the SVINI-EVO ensembles have very similar skill (with difference not 
statistically significant). Over the tropics, the EDA ensemble has a statistically significant better skill than 
the SVINI ensemble, and the EDA-SVINI ensemble has a statistically significantly better skill than the 
SVINI-EVO ensemble 
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Figure 8: Average (20 cases) ensemble-mean RMSE (solid lines) and ensemble spread (solid lines with full 
circles) of SVINI (black lines, top-left panel), EDA (green lines, top-right panel), SVINI-EVO (blue lines, 
bottom-left panel) and EDA-SVINI (red lines, bottom-right panel) ensembles, computed for the 850 hPa 
temperature over the Northern Hemisphere extra-tropics. In each panel, bars around the RMSE lines the 
[0.05,0.95] confidence interval for the difference (spread-RMSE) estimated using a bootstrapping technique (see 
text for more details).  

 
Figure 9: As Fig. 8 but for the 850 hPa temperature over the tropics.  
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Figure 10: As Fig. 8 but for the 500 hPa geopotential height over the Northern Hemisphere extra-tropics. 

 
Figure 11: As Fig. 8 but for the zonal-wind component at 850 hPa over the tropics. 
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Figure 12: Average (20 cases) ranked probability skill score (solid lines) of SVINI-EVO (right panels, blue 
lines), EDA-SVINI (right panels, red lines), SVINI (left panels, black lines) and EDA (left panels, green lines) 
ensembles, computed for the 850 hPa temperature over the Northern Hemisphere extra-tropics (top panels) and 
the tropics (bottom panels). In each panel, bars around one of the two lines denote the [0.05,0.95] confidence 
interval for the difference of the scores of the two ensembles estimated using a bootstrapping technique (see text 
for more details).  

 
Figure 13: As Fig. 12 but for the 500 hPa geopotential height over the Northern Hemisphere extra-tropics (top 
panels) and for the zonal-wind component at 850 hPa over the tropics (bottom panels). 
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Overall, the EDA-SVINI ensemble shows the best agreement between STD and RMSE of the ensemble-
mean, smallest ensemble-mean RMSE and the best RPSS for probabilistic forecasts. Having, on average, a 
good agreement between STD and ensemble-mean RMSE is considered as a necessary condition for a skilful 
ensemble system: in fact, in the ideal situation that one perturbed member is a perfect forecast, the average 
STD should coincide with the average ensemble-mean RMSE, see e.g. the discussion in Buizza and Palmer 
(1998). The EDA-SVINI ensemble benefits from the strengths of the SVs over the extra-tropics and of the 
EDA perturbations over the tropics.  

5. Discussion and conclusions 
The simulation of initial uncertainties is one of the key problems in ensemble prediction. At ECMWF, these 
uncertainties have been simulated with singular vectors (SVs), perturbations characterized by the fastest 
growth, measured using a total energy norm (Palmer et al 1998), over a finite time interval. In the current 
operational system, different sets of singular vectors are used to better sample the initial uncertainties: to 
improve geographical coverage, SVs are computed separately over the Northern and the Southern 
Hemisphere extra-tropics, and for up to 6 local regions in the tropics. Furthermore, initial-time SVs growing 
into the first 48 hours of the forecast range are mixed with evolved SVs, computed to grow during the 48 
hours leading to the analysis time: the former represent uncertainties growing during the forecast time, while 
the latter represent uncertainties that have been growing during the data-assimilation cycle. The initial-time 
and evolved SVs, computed for the different areas, are orthogonalized and scaled to have an amplitude 
comparable to the analysis error estimate provided by the ECMWF data assimilation system (see Palmer et 
al 2007 for a review of the evolution of the ECMWF ensemble system from its implementation in 1992 to 
date). 

In this work, experiments have been performed for 20 cases spanning a 40-day period with a TL399L62 
resolution, and results have been presented to address three key questions: 

• How similar/different are EDA-based and SV-based initial perturbations? 

• What is the difference in skill in an ensemble using EDA-perturbations only and an ensemble using 
SV-perturbations only? 

• Can the skill of the EPS be improved by combining EDA- and SV-based perturbations? 

Considering the first question, results presented in section 3 have shown that the EDA perturbations are less 
localized geographically and have a better coverage of the tropics. They also have smaller scales than SV-
based perturbations, and have a less evident vertical tilt with height, which explains why they grow less with 
the forecast time. The comparison of EDA-based and SV-based ortho-normal bases has given a measure of 
their similarity: results indicate that they span different regions of the phase-space of the system. Considering 
the second question, results presented in section 4 have shown that the EDA ensemble has too little spread, 
due to a combination of too small initial amplitudes and too slow growth, and this has a negative impact on 
its performance. Considering the third question, combining the EDA and the initial-time SVs gives a superior 
ensemble system to the operational system, which uses a combination of initial-time and evolved SVs. In 
fact, the EDA-SVINI ensemble shows the best agreement between STD and RMSE of the ensemble-mean, 
the smallest ensemble-mean RMSE and the best RPSS for probabilistic forecasts. The EDA-SVINI ensemble 
benefits from the strengths of the SVs over the extra-tropics and of the EDA perturbations over the tropics. 
Results discussed in section 3 have also shown that the subspace spanned by combined SVINI-EDA 
perturbations explains a larger percentage of control forecast error than if used individually. It is worth to 
mention that similar conclusions were reached by earlier experiments performed with a TL255L40 model 
version (Leutbecher et al 2007).  
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As briefly reviewed in the Introduction, several studies have compared the strengths and weaknesses of the 
different methods used in ensemble prediction to simulate initial uncertainties following three approaches: a 
simple-but-same-model environment, a complex-but-different-model environment or a complex-and-same-
model environment approach. It is interesting to contrast the results discussed in this communication with the 
conclusions of three very recent studies obtained using the three different approaches.  

Firstly, consider Descamps and Talagrand (2007), who followed a simple-but-same-model environment 
approach and compared the performance of ensembles based on SVs, bred vectors, ensemble Kalman filter 
and Ensemble Transformed Kalman filter, and concluded that the two latter outperform the two former 
ensembles. In our view, the key reason why their results do not agree with our results is the over-
simplification of the approach that they followed. Their over-simplification, on the one hand due to the use 
of a perfect model assumption (they only included the effect of model errors due to a resolution truncation 
from T81 to T21) and to their use of simple, low resolution models (e.g. without moist processes) compared 
to the one used in this study, and on the other hand due to the use of synthetic data as verification, makes it 
difficult, if not impossible, to apply their conclusions to the real problem. This is, in our view, the main 
reason why they found that an SV-based system is sub-optimal, while results discussed in this work indicate 
that an SV-based approach still outperforms an EDA-based system.  

Secondly, consider Park et al (2008), who followed a complex-but-different-model environment approach 
and compared the performance of seven operational ensemble prediction systems. This work provides some 
explanations of the different performances detected by Park et al (2008). For example, the fact that the EDA 
ensemble is severely under-dispersive compared to the SVINI ensemble can help understanding why the 
Canadian ensemble system needs to start with much larger initial perturbations to have a spread comparable 
to the ECMWF ensemble. In fact, the EDA ensemble has been generated following the approach used by 
Houtekamer et al (1996) to set-up the Canadian ensemble. It is interesting to compare one result of Descamp 
and Talagrand (2007) with Park et al (2008): in Descamp and Talagrand (2007) the SV method produces an 
under-dispersive ensemble at all forecast ranges (see their Fig. 4). This is in contrast with the results of Park 
et al (2008), who show that SV-based ensembles have the best tuned ensemble spread, especially in the 
medium-range (see their Fig. 4). This disagreement between the two works confirms, in our view, the fact 
that it is difficult to apply Descamp and Talagrand (2007)’s conclusions to real systems. 

Thirdly, consider Magnusson et al (2008), who followed a complex-and-same-model environment approach, 
and compared the performance of ensembles based on the ECMWF model, and with initial perturbations 
defined using SVs and two types of bred vectors. The key difference between this study and Magnusson et al 
(2008), is that this work uses an ensemble of analyses instead of bred vectors as an alternative to SVs. 
Compared to using bred vector, using an ensemble of analyses is, in our view, a better approach, since the 
ensemble of analyses is influenced by observation coverage and observation error statistics, while bred 
vectors only try to mimic the effect of an analysis cycle. The ensemble of analyses has larger spread in areas 
characterized by less coverage and/or larger observation errors, and is thus better capable to simulate the 
effect of observation errors on initial conditions. Magnusson et al (2008)’s conclusions are very similar to 
the ones drawn in this work: both studies indicate that over the extra-tropics SVs provides a better 
performance, and that the ECMWF operational ensemble system has a poorer performance over the tropics 
due to the fact that the SVs sample only a sub-region of the tropical band. Furthermore, this work goes 
beyond simply comparing the two methods, and proposes to combine initial-time SVs and an ensemble of 
analyses to benefit from the strengths of both of them.  

The three questions posed above will be re-addressed in the near future with a new set of ensemble of 
analyses generated using a new model version that is producing a larger, more realistic spread, and possibly 
different schemes. The main differences between this new model cycle and the one used in the experiments 
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discussed in this work are that it has a different physics and a reduced initial perturbation amplitude 
(Bechtold et al 2008), and a revised version of the stochastic backscatter scheme used to simulate model 
uncertainties in the ensemble of data assimilation (Shutts 2005, Berner et al 2008). Furthermore, work is in 
progress to take account of correlations of radiance errors in the ensemble of analyses: this could lead to a 
larger initial spread among the EDA analyses, leading to a more realistic representation of analysis errors. 
Finally, the re-assessment will also consider the possibility to include an extra set of SVs computed for the 
entire tropical band.  
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