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Method: modelling of covariance matrices with wavelets

Wavelet transformed
zonally averaged covariance matrix
(NMC method, 480×480 coefficients)
for geopotential height
at 500 hPa, 60◦ N.

Only few coefficients of
wavelet transformed covariance
matrices are considerably
different from zero.

Covariances are representable
by extremely sparse matrices.

No approximations beyond
truncation of wavelet basis
expansion.
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Discrete Wavelet transformation (DWT)

Fast hierarchical transform with operation count O(n).

coefficients (λ) of the gridded function

λ4,1 λ4,2 λ4,3 λ4,4 λ4,5 λ4,6 λ4,7 λ4,8 λ4,9 λ4,10 λ4,11 λ4,12 λ4,13 λ4,14 λ4,15 λ4,16

low pass high pass
↓ ↓

λ3,1 λ3,2 λ3,3 λ3,4 λ3,5 λ3,6 λ3,7 λ3,8 γ3,1 γ3,2 γ3,3 γ3,4 γ3,5 γ3,6 γ3,7 γ3,8

low pass high pass
↓ ↓

λ2,1 λ2,2 λ2,3 λ2,4 γ2,1 γ2,2 γ2,3 γ2,4 γ3,1 γ3,2 γ3,3 γ3,4 γ3,5 γ3,6 γ3,7 γ3,8

low pass high pass
↓ ↓

λ1,1 λ1,2 γ1,1 γ1,2 γ2,1 γ2,2 γ2,3 γ2,4 γ3,1 γ3,2 γ3,3 γ3,4 γ3,5 γ3,6 γ3,7 γ3,8

low high
↓ ↓

λ0,1 γ0,1 γ1,1 γ1,2 γ2,1 γ2,2 γ2,3 γ2,4 γ3,1 γ3,2 γ3,3 γ3,4 γ3,5 γ3,6 γ3,7 γ3,8

wavelet (γ) and scaling function (λ) coefficients

Coefficients of the transformed vector correspond to the average value
(λ) and to the deviations (γ) on different scales.

Inverse transform is a fast hierarchical transform as well.
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Wavelet basis functions

The wavelet (ψ) and scaling (ϕ)
basis functions are implicitly
defined by the high and low-pass
filter coefficients.

Direct wavelet transform W:

f =
∑

k λ0,k ϕ0,k +
∑

j,m γj,m ψj,m

Inverse Wavelet transform W−1:

λj,k = 〈f , ϕ̂j,k〉
γj,m = 〈f , ψ̂j,m〉

For orthogonal wavelet
transformations the direct basis
functions (ψ,ϕ) and duals (ψ̂, ϕ̂)
are the same.

Basis functions (ϕ, ψ) for the orthogo-
nal Daubechies-8 wavelet transform.
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Wavelet transformed covariance matrices

Wavelet transformations apply
independently to each row and
column of a matrix.

Covariances of phenomena at the
same scale are represented by the
diagonal blocks.

Covariances of phenomena at
different scale are represented by
off-diagonal blocks.

Covariances of phenomena at
nearby locations are represented
by coefficients in the vicinity of
the ‘branches’ (diagonals of the
blocks).

Only these coefficients are
considerably different from zero.
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Block structure of wavelet transformed
matrices
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Factorisation of B; Truncated expansion

Covariance matrix in wavelet
representation:

B = WB̂WT

Neglection of small coefficients of
B may lead to indefinite matrices.

Factorise B̂ to ensure positive
definite covariance matrices:

B̂ = L̂L̂T

Large coefficients of the
symmetric square root L̂ have
similar sparse pattern as B̂.

Neglect small coefficients of L̂ for
a sparse representation.

Symmetric square root L̂ of B̂ in wavelet representation.

The matrix is rescaled so that the diagonal elements are equal
to 1. Only 240×240 of the 480×480 coefficients are shown.
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Truncated Wavelet Expansion (zonal direction)

Number of coefficients for a
reasonable approximation of B:
5 to 10 times the number of
grid-points.

Variations far from the center of
the covariance function consist of
noise due to limited size of the
NMC ensemble.

‘Noise’ is approximated less
accurately than the signal.

Zonally averaged geopotential height correlations in 60◦ N.

Black: NMC derived correlations (31 forecast pairs, 1 month).

Red: Correlations approximated by the truncated wavelet ex-
pansion. The largest 2400 coefficients (0.5% threshold) of the

230400 coefficients of L̂ (1%) were used, corresponding to 5
times the number of grid-points (Nx = 480).

(A value of 1 has been subtracted from the central part of the
plot.)
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Truncated Wavelet Expansion (meridional)

Apply method to zonally averaged
meridional covariance matrices.

Covariance functions are inhomogeneous.

Zonal averaging has no effect at the poles.

Top: Truncated matrix L̂hh (0.5% threshold, 10.2×Nx coefficients).

Right: Correlations with geopotential height at 60◦ N and 0◦.
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Multivariate covariances

Multivariate covariances handled by the usual block-tridiagonal approach:

L̂ =


L̂hh

L̂ψh L̂ψuψu

. . L̂χχ

. . . L̂qq


Diagonal blocks refer to the unbalanced variables:
height h, stream-function ψu, velocity potential χ and humidity q

Cross-correlations representable by sparse wavelet transformed matrices.
L̂ψh for the geostrophic balance operator.

No approximations beyond truncation errors if lower triangle is completed.

Block-triangular form is a Cholesky decomposition of B̂.
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Multivariate covariances (wind–height)

Complex cross-covariances representable by sparse wavelet expansion.

Wind–height covariances (v -h) shown here:
(instead of the simpler ψ -h covariances)

Bvh = WL̂vhL̂T
hh WT

Truncated matrix L̂vh (2% threshold, 9.2×Nx coefficients) and approximated wind–height (v -h) covariances.
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Implementation issues: 3 dimensional Grid

The method works well in 1-D.
3-D implementation issues:

Wavelet transforms on regular 3-D grids apply separately to each of the
dimensions:

W3D = WxWyWz

PSAS formulation of the DWD 3D-Var does not depend on a specific grid.

Our choice:

I Gaussian Grid, 512× 256 grid-points
I 64 pressure levels equidistant in log p
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Truncation

In higher dimensions B̂ and L̂ remain sparse.

Number of coefficients per grid-point n/N:

Direction n/N
1D horizontal or vertical: 10
2D horizontal: 30 - 50
2D vertical: 30
3D (expected): 100

Operation count of L̂x comparable to Wx.

Further savings in storage possible due to symmetry and homogeneity.
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Factorisation, zonal average
Zonal averaging essential in ‘parameterless fit’ to derive coefficients of B̂.

Procedure:

1 Estimate B̃ in Fourier representation from ensemble vectors u (NMC
method), including zonal averaging:

B̃ =
1

n
(W−1

yz F−1
x u) (W−1

yz F−1
x u)T

2 Extract square root:
B̃ = L̃L̃T

3 Transform L̃ to wavelet representation:

L̂ = W−1
x Fx L̃ FT

x W−T
x

I Valid only for WT
x = W−1

x (orthogonal wavelet transform).
I Operation count of Fourier and wavelet transformations is O(N log N)

for homogeneous matrices.
I Only a limited number of coefficients calculated and tested for

relevance, starting at the diagonal and the ‘branches’ of B̂.
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Example: 2d horizontal covariances

Geopotential height horizontal covariance matrix,
NMC derived (48-24 h, 1 year: 2006), zonally averaged.

Number of coefficients: 40× Nx × Ny (Gaussian grid, 512× 256).
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Example: 2d vertical covariances

Zonally averaged vertical (zonal-height) covariance matrix at 0◦.
Covariances with geopotential height in 100 hPa.

Number of coefficients: 30× Nx × Nz (grid: 512×64),

No separability assumed.

Tilted structures can be represented.

NMC derived (48-24 h, 1 month: July 1006), zonally averaged, vertical coordinate is log p (64 levels, 1000 to 10 hPa).
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Implementation in the 3D-Var–PSAS of DWD

Full 3D implementation of the Wavelet approach:

B = I W L̂ L̂T WT IT

with L̂: multivariate square root of B̂
W: 3D wavelet transform
I: interpolation operator, differentiation: h → t; ψ, χ→ u, v

Intermediate step:
The former explicit (separable) covariance model is replaced by the
equivalent wavelet formulation:

B = I KWv L̂v Wh L̂h L̂T
h WT

h L̂T
v WT

v KTIT

with K: geostrophic balance operator relating h and ψ.

L̂v L̂h: square root of vertical and horizontal univariate covariances.
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Experimentation in the 3D-Var–PSAS

Status:

Wavelet representation of the former analytic formulation

I analysis increment differences of 1% (truncation errors).

Simulation of noise as expected from NMC ensembles of 3 months

I degradation of the analyses.

Next steps:

Further reduce noise by:

I 1 year statistics.
I Specific filtering at the poles.
I Thresholding based on statistical reasoning.

Use horizontal covariances from NMC statistics.
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Statistical aspects of sample covariances and thinning

Ensemble x = xmodel − xtrue, true covariance: B = E
{
x x†}

Unbiased estimate: sample covariance

S =
1

N − 1

N∑
m=1

(
x (m) − x̄

) (
x (m) − x̄

)†
, E {S} = B

Variance of sample covariance coefficients (Gaussian errors)

σ2
ij ≡ E

{
(Sij − Bij)

2
}

=
1

N − 1

[
BiiBjj + (Bij)

2
]

Error of off-diagonal coefficients dominated by diagonal elements!

Zonal averaging increases “effective sample size” by roughly
Nx/(2Lx), where Lx is the correlation length scale in grid points

Andreas Rhodin, Harald Anlauf (DWD) Representation of inhomogeneous . . . June 12, 2007 19 / 30



Estimation of a homogeneous correlation in grid space
Monte-Carlo simulation with known truth

I Isotropic correlation on sphere (L = 500 km),
compactly supported, Gaspari&Cohn

I Test sample: ensemble with N = 31, latitude: 60◦

I Grid space representation to 1% needs 125 coefficients (Nx = 512)!
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Estimation of wavelet coefficients

Wavelet transformation collects information in few coefficients
I Noise is almost evenly distributed at each scale combination

Statistical filtering: selection of a (connected) coefficient block
I Student’s t test (single coefficient) or χ2 test (multiple coefficients)

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16
Offset

Wavelet coefficients (DAUB_8) in diagonal block (5,5)

Sampling uncertainty
Sampled coefficients

Exact coefficients

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16
Offset

Wavelet coefficients (DAUB_8) in off-diagonal block (4,5)

Sampling uncertainty
Sampled coefficients

Exact coefficients

Andreas Rhodin, Harald Anlauf (DWD) Representation of inhomogeneous . . . June 12, 2007 21 / 30



Statistical thinning using wavelets: homogenous case

Choose threshold according to the desired confidence level for
significance testing

I Example 1: |t| > 1 and χ2/d.o.f > 1
I Example 2: |t| > 2 and χ2/d.o.f > 4
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Statistical thinning using wavelets: homogenous case

Thinning of B destroys positive-definiteness!
Observation: sparsity pattern of symmetric square root L very close
to that of B

I Take mask from B, but apply to L
I Reconstruct B
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Flow Dependence:

Up to now static covariance matrices, derived from (NMC) forecast
differences over long periods (1 month to 1 year).

Method (parameterless fit) cannot be applied to EnKF ensembles (n < 100)
because noise is not eliminated.

Aim: blend static covariance matrix derived from large ensemble with
information from a smaller EnKF ensemble.

2 possible approaches:

I Add free parameters (diagonal matrix D) to the static covariance
model.
Adjust (fit) the free parameters so that the statistical properties of the
EnKF ensemble are met.

B = I W L̂D L̂T WT IT

I Estimate coefficients of B̂ or L̂ from both the large ensemble and the
small EnKF ensemble and estimate an optimal value from the
respective values and spreads.
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Conclusions

NMC derived covariances are represented with 1% accuracy by
truncated wavelet basis expansions.

The method has been implemented and tested in 1 and 2 dimensions.

The cost is comparable to that of other methods (spectral transform).

The accuracy of the analyses is limited by the noise introduced by the
NMC statistics.

I More efficient filtering procedures are tested.

Up to now static covariances were derived.

I Flow dependent extensions are investigated.
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Spare slides

. . .
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Bi-Orthogonal Wavelet basis functions

Scaling ϕ and wavelet basis functions ψ for a bi-orthogonal transform (left) and

the respective dual basis functions ϕ̂, ψ̂ (right).

2-dimensional transforms on irregular grids can be constructed with
bi-orthogonal wavelets by the Lifting Scheme.
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Statistical thinning: dependence on wavelet basis

Thinning of L using sparsity pattern derived from analysis of B

Filtering properties depend on wavelet smoothness, support length
I Smoother wavelets lead to smoother results, but have longer ‘tails’ !
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Statistical thinning using wavelets: inhomogeneous case

More sophisticated estimation techniques necessary (e.g. T. Cai)
A simple test: just take over mask from homogeneous case

I Smoothing quite effective
I Thinning of L degrades normalization of B!
I A posteriori adjustment necessary (e.g. renormalization in 1d)
I Not clear yet how to do in 2d and 3d, but unavoidable
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Statistical thinning: meridional covariances
Meridional covariances are noisier, even with zonal averaging

I Unfavorably large correlations between poles difficult to suppress on
statistical grounds only

I Ad-hoc or model-based elimination of affected coefficients impairs
normalization
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