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Method: modelling of covariance matrices with wavelets

Geopotential B matrix, transf. (haar) I
300000
I
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30000

s @ Only few coefficients of

1 Ijg:z wavelet transformed covariance
! o matrices are considerably

:.J 3000 different from zero.

=10000

[ o Covariances are representable

) o by extremely sparse matrices.
] @ No approximations beyond
Wavelet transformed truncation of wavelet basis
zonally averaged covariance matrix expansion.

(NMC method, 480%x480 coefficients)
for geopotential height
at 500 hPa, 60° N.
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Outline

@ Method
@ Wavelet transformation
@ Factorisation of B, truncated expansion
@ Multivariate covariances

© Implementation
o Grid
@ Truncation, factorisation, zonal averaging
@ 2D examples
@ Implementation in the 3D-Var—-PSAS

© Topics of further research
@ Statistical aspects of sample covariances and thinning
@ Flow Dependence

@ Conclusions

Andreas Rhodin, Harald Anlauf (DWD) Representation of inhomogeneous . .. June 12, 2007

3/30



Discrete Wavelet transformation (DWT)

e Fast hierarchical transform with operation count O(n).

coefficients (\) of the gridded function
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l 1
Aoyt | vo1 [ 1,1 vi2 | Y21 22 2,3 72,4 [ 3,1 732 933 3.4 T35 V36 V3,7 3,8

wavelet () and scaling function () coefficients

o Coefficients of the transformed vector correspond to the average value
(M) and to the deviations () on different scales.

@ Inverse transform is a fast hierarchical transform as well.
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Wavelet basis functions

@ The wavelet (1) and scaling (¢) DAUB 8 basis functions
basis functions are implicitly =
defined by the high and low-pass
filter coefficients.

@ Direct wavelet transform W:

f=2 % Aok POkt mVism Yjom A LA
@ Inverse Wavelet transform W—1; == \/ \/

N = (F 34) N .

Yim = <f, 1/}j,m> o

T80 700 ED E)

@ For orthogonal wavelet @
transformations the direct basis  Basis functions (¢, ¢) for the orthogo-
functions (¢, ) and duals (¢}, #) nal Daubechies-8 wavelet transform.
are the same.
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Wavelet transformed covariance matrices

@ Wavelet transformations apply
independently to each row and
column of a matrix.

@ Covariances of phenomena at the
same scale are represented by the
diagonal blocks.

Covariances of phenomena at v
different scale are represented by
off-diagonal blocks.

v,

@ Covariances of phenomena at
nearby locations are represented
by coefficients in the vicinity of %

: — L2
LTkal:;r)anches (diagonals of the TR m
' . Block structure of wavelet transformed
Only these coefficients are matrices

considerably different from zero.
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Factorisation of B; Truncated expansion

@ Covariance matrix in wavelet
representation:

B=WBW’
Neglection of small coefficients of
B may lead to indefinite matrices.

@ Factorise B to ensure positive
definite covariance matrices:

B Qi

@ Large coefficients of the
sym metric square root L have Symmetric square root L of B in wavelet representation.

similar sparse pattern as é The matrix is rescaled so that the diagonal elements are equal
to 1. Only 240 240 of the 480x 480 coefficients are shown.

@ Neglect small coefficients of L for
a sparse representation.
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Truncated Wavelet Expansion (zonal direction)

@ Number of coefficients for a
reasonable approximation of B:
5 to 10 times the number of
grid-points.

@ Variations far from the center of
the covariance function consist of
noise due to limited size of the
NMC ensemble.

@ ‘Noise’ is approximated less
accurately than the signal.

Geopotential correlations (daub_8) truncated
02

180 -120 -60 [ 60 120 180
Zonally averaged geopotential height correlations in 60° N.
Black: NMC derived correlations (31 forecast pairs, 1 month).

Red: Correlations approximated by the truncated wavelet ex-
pansion. The largest 2400 coefficients (0.5% threshold) of the
230400 coefficients of L (1%) were used, corresponding to 5
times the number of grid-points (N = 480).

(A value of 1 has been subtracted from the central part of the
plot.)
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Truncated Wavelet Expansion (meridional)

@ Apply method to zonally averaged
meridional covariance matrices.

@ Covariance functions are inhomogeneous.

@ Zonal averaging has no effect at the poles.

h—h meridional L matrix (daub_8) I
4
2

Top: Truncated matrix Ly, (0.5% threshold, 10.2 x Ny coefficients).
Right: Correlations with geopotential height at 60° N and 0°.
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Multivariate covariances

Multivariate covariances handled by the usual block-tridiagonal approach:

Lon
Lyn Ly,

-
Il

Lix R
Loq

Diagonal blocks refer to the unbalanced variables:
height h, stream-function 1, velocity potential x and humidity g

@ Cross-correlations representable by sparse wavelet transformed matrices.
L for the geostrophic balance operator.

@ No approximations beyond truncation errors if lower triangle is completed.
Block-triangular form is a Cholesky decomposition of B.
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Multivariate covariances (wind—height)

@ Complex cross-covariances representable by sparse wavelet expansion.

@ Wind-height covariances (v-h) shown here:
(instead of the simpler ) -h covariances)

B,,=WL,L] W™

I h—v covariance (daub_8) truncated
2

-0.2 -100

-200

-300

—4 -400

-180 -120 -60 Q 60 120 180

Truncated matrix Ly, (2% threshold, 9.2 x Ny coefficients) and approximated wind-height (v-h) covariances.
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Implementation issues: 3 dimensional Grid

The method works well in 1-D.
3-D implementation issues:

@ Wavelet transforms on regular 3-D grids apply separately to each of the
dimensions:
W3p = W, W,W,

@ PSAS formulation of the DWD 3D-Var does not depend on a specific grid.

@ Our choice:

» Gaussian Grid, 512 x 256 grid-points
> 64 pressure levels equidistant in log p
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Truncation

@ In higher dimensions B and L remain sparse.
Number of coefficients per grid-point n/N:

Direction n/N
1D horizontal or vertical: 10
2D horizontal: 30 - 50
2D vertical: 30
3D (expected): 100

@ Operation count of Lx comparable to Wx.

@ Further savings in storage possible due to symmetry and homogeneity.
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Factorisation, zonal average
Zonal averaging essential in ‘parameterless fit' to derive coefficients of B.

Procedure:

@ Estimate B in Fourier representation from ensemble vectors u (NMC
method), including zonal averaging:

@ Extract square root:

© Transform L to wavelet representation:
i 1 T eTwyw-T
L=W_"F,LF, W,

» Valid only for WT = Wy ! (orthogonal wavelet transform).

» Operation count of Fourier and wavelet transformations is O(N log N)
for homogeneous matrices.

> Only a limited number of coefficients calculated and tested for
relevance, starting at the diagonal and the ‘branches’ of B.
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Example: 2d horizontal covariances

@ Geopotential height horizontal covariance matrix,
NMC derived (48-24 h, 1 year: 2006), zonally averaged.

@ Number of coefficients: 40 x N, x N, (Gaussian grid, 512 x 256).
geopotential height correlations, NMC 2006 500hPa

30N

308

60S

180 180
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Example: 2d vertical covariances

@ Zonally averaged vertical (zonal-height) covariance matrix at 0°.
Covariances with geopotential height in 100 hPa.

@ Number of coefficients: 30 x N, x N, (grid: 512x64),
@ No separability assumed.

@ Tilted structures can be represented.

covariance

NMC derived (48-24 h, 1 month: July 1006), zonally averaged, vertical coordinate is log p (64 levels, 1000 to 10 hPa).

[ |
—-1000 O 1000 2000 3000 4000 5000 6000 7000 8000
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Implementation in the 3D-Var-PSAS of DWD

@ Full 3D implementation of the Wavelet approach:
B=IWLLTWTIT
with L: multivariate square root of B
W: 3D wavelet transform
I interpolation operator, differentiation: h —t; ¥, x — u,v
@ Intermediate step:

The former explicit (separable) covariance model is replaced by the
equivalent wavelet formulation:

B=IKW,L W,L, [JWILTWIK™IT
with  K:

PN

geostrophic balance operator relating h and .
Lv i:hi

square root of vertical and horizontal univariate covariances.
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Experimentation in the 3D-Var-PSAS

Status:
@ Wavelet representation of the former analytic formulation
» analysis increment differences of 1% (truncation errors).
@ Simulation of noise as expected from NMC ensembles of 3 months
> degradation of the analyses.
Next steps:
@ Further reduce noise by:

> 1 year statistics.
» Specific filtering at the poles.
» Thresholding based on statistical reasoning.

@ Use horizontal covariances from NMC statistics.
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Statistical aspects of sample covariances and thinning

o Ensemble x = Xmodel — Xtrue, true covariance: B = E {xx'}

@ Unbiased estimate: sample covariance

1 O t
_12:1(x(’")—>_<> (x(m)—)'<> , E{S} =B

m=

@ Variance of sample covariance coefficients (Gaussian errors)

Gizj = E{(Sj - By)® }_ [B"BJJ+(B )]
Error of off-diagonal coefficients dominated by diagonal elements!

@ Zonal averaging increases “effective sample size” by roughly
Ny /(2Lx), where Ly is the correlation length scale in grid points
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Estimation of a homogeneous correlation in grid space

@ Monte-Carlo simulation with known truth
» lIsotropic correlation on sphere (L = 500 km),
compactly supported, Gaspari&Cohn
» Test sample: ensemble with N = 31, latitude: 60°
> Grid space representation to 1% needs 125 coefficients (N, = 512)!

Homogeneous correlations: sampling error

1 T T T T T T T =
Sampling uncertainty
0.9 [ Sampled correlation il
Exact correlation

0.8 [ 41
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.01 ! ! ! ! ! I ! ! ! ! !
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Estimation of wavelet coefficients

@ Wavelet transformation collects information in few coefficients

» Noise is almost evenly distributed at each scale combination

o Statistical filtering: selection of a (connected) coefficient block
» Student’s t test (single coefficient) or x? test (multiple coefficients)

o

IS

5

~
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Wavelet coefficients (DAUB_8) in diagonal block (5,5)

L e e e L
Sampling uncertainty
Sampled coefficients
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Wavelet coefficients (DAUB_8) in off-diagonal block (4,5)
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Statistical thinning using wavelets: homogenous case

@ Choose threshold according to the desired confidence level for

significance testing

» Example 1: |t| > 1 and x?/d.o.f>1
» Example 2: |t| > 2 and x?/d.o.f >4

Homogeneous correlations: B, unfiltered vs. wavelet filtered (DAUB_8)

Unfiltered

09

08

07

06

05

04 |

03 |

02|

01|

B, with threshold 1
ith threshold 2

-0.1 L L

-180  -150  -120
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Statistical thinning using wavelets: homogenous case

@ Thinning of B destroys positive-definiteness!
@ Observation: sparsity pattern of symmetric square root L very close
to that of B
» Take mask from B, but apply to L
» Reconstruct B

Homogeneous correlations: filtering of B vs. masking of L (DAUB_8)

1.1 T T T T T T
Unfiltered

B, with threshold 2 4
—— L, with threshold 2
09 4
08 4
0.7 4
0.6 4
0.5 F b
04 b
0.3 b

02 —

201 L L L L L L L L L L

-180  -150  -120 -90 -60 -30 0 30 60 920 120 150 180
Longitude difference [degrees]
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Flow Dependence:

@ Up to now static covariance matrices, derived from (NMC) forecast
differences over long periods (1 month to 1 year).

@ Method (parameterless fit) cannot be applied to EnKF ensembles (n < 100)
because noise is not eliminated.

@ Aim: blend static covariance matrix derived from large ensemble with
information from a smaller EnKF ensemble.
2 possible approaches:

> Add free parameters (diagonal matrix D) to the static covariance
model.
Adjust (fit) the free parameters so that the statistical properties of the
EnKF ensemble are met.

B=IWLDLTWTIT

» Estimate coefficients of B or L from both the large ensemble and the
small EnKF ensemble and estimate an optimal value from the
respective values and spreads.
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Conclusions

@ NMC derived covariances are represented with 1% accuracy by
truncated wavelet basis expansions.

The method has been implemented and tested in 1 and 2 dimensions.

The cost is comparable to that of other methods (spectral transform).

The accuracy of the analyses is limited by the noise introduced by the
NMC statistics.

» More efficient filtering procedures are tested.

@ Up to now static covariances were derived.

» Flow dependent extensions are investigated.
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Spare slides
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Bi-Orthogonal Wavelet basis functions

CUB_LIFTED basis functions CUB_LIFTED dual basis functions

. . . AN

N
P o

—— -0
1] 360 LY %0 T80 20 ED 36

& o 180 70

Scaling ¢ and wavelet basis functions ¢ for a bi-orthogonal transform (left) and
the respective dual basis functions @, ¢ (right).

@ 2-dimensional transforms on irregular grids can be constructed with
bi-orthogonal wavelets by the Lifting Scheme.
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Statistical thinning: dependence on wavelet basis

Thinning of L using sparsity pattern derived from analysis of B
o Filtering properties depend on wavelet smoothness, support length
» Smoother wavelets lead to smoother results, but have longer ‘tails’!

selection in L 1) b ion, icient selection in L 2)
1.1 T T T T T 1 T T T T T
DAUB.8 —— DAUB 8 ——
1F DAUB_10 —— [ 09 F DAUB_10 —— H
DAUB_20 —— DAUB_20 ——
09 08 '
0.8 | ~ 07 |k |
0.7 | q
06 q
0.6 | 4
05 4
0.5 4
04 R
04t R
03 q
03 | q
0.2 | 4 02 [ 4
01| 4 01 -
o /3\\\/ \//\ 0 / \f N
ol L ) L
-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180 -180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
Longitude difference [degrees] Longitude difference [degrees]
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Statistical thinning using wavelets: inhomogeneous case

@ More sophisticated estimation techniques necessary (e.g. T. Cai)
@ A simple test: just take over mask from homogeneous case

» Smoothing quite effective

» Thinning of L degrades normalization of B!

> A posteriori adjustment necessary (e.g. renormalization in 1d)

> Not clear yet how to do in 2d and 3d, but unavoidable

Wavelet fitering of non-homogenized sample covariance
11 T T T T T

T T
Sampling uncertainty

T Unfiltered covariance ——
09} Wavelet filtered B ——
Wavelet fitered L ——
08 g

0.7
0.6
05
04
03

02
0.1

Y
< PRI

-0.3

04 I I I i I I 1 1 1
-180  -150  -120 -90 -60 -30 0 30 60 90 120 150 180
Longitude difference [degrees]
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Statistical thinning: meridional covariances

@ Meridional covariances are noisier, even with zonal averaging
» Unfavorably large correlations between poles difficult to suppress on
statistical grounds only
» Ad-hoc or model-based elimination of affected coefficients impairs
normalization

Meridional correlation (including zonal averaging, CDV_8 wavelet)

! Sampling uncertainty ' ' ' '

09 H Unfiltered correlation
—— Wavelet B, threshold 2

0.8 [ ——— WaveletL, threshold 2 |
0.7
06
05
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02
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’ ~
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