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Background

• Canadian NWP centre currently has both a global 4D-Var (for 
deterministic forecasts) and EnKF (for probabilistic forecasts)

• Provides good opportunity to evaluate use of flow-dependent 
ensemble background error covariances in a variational system

• Goal of presentation:

1. describe earlier experiments of using EnKF-estimated flow-
dependent error covariances in 3D-Var

2. discuss complementary effects of spatial and spectral localization 
applied to ensemble-estimated error covariances

3. describe plans for incorporating flow-dependent error covariances in 
a global 4D-Var system (part of comparison of EnKF and 4D-Var)



Ensemble-based error covariances in 3D-Var

• Approach [described in Buehner (2005), QJRMS]:

• no localization: elements of control vector determine global
contribution of each ensemble member to the analysis increment:

x = (ek – <e>) k                               ( k is a scalar)

• spatial localization: elements of control vector determine local
contribution of each ensemble member to the analysis increment:

x = (ek – <e>) o (C1/2 k)          ( k is a vector)

• can also combine with standard B matrix:

x = 1/2 (ek – <e>) o (C1/2 k) + (1- )1/2 B1/2
HI

• in each case, Jb is Euclidean inner product:

Jb = 1/2 T 



Sampling error in ensemble-based error 
covariances

• Test ability of ensemble-based error covariances to reproduce “true”
covariances as function of ensemble size and amount of localization

• Use operational B matrix as truth (with homog/isotr. correlations for 
main analysis variables), generate ensemble members:

ek = B1/2 k where k = N(0,I)

• Final value of Jo (including all operational data) is used as a simple 
measure of accuracy of ensemble-based covariance estimate: 
ability to fit to observations

• Assume resulting covariances are affected by sampling error in a
similar way as with an EnKF-generated ensemble



Final value of Jo (normalized by value from using “true” B) as a 
function of localization radii and ensemble size:
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• Corrections to T and 
UV in response to a 
single obs of T near 
the surface

• Black contours show 
background T

• EnKF error 
covariances from 
128 ensemble 
members and 
horizontal and 
vertical localization

Earlier tests with EnKF error covariances
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• Impact of EnKF vs. standard 
3D-Var error covariances

• Horizontal and vertical 
localization applied to EnKF
covariances

• Single case of rapidly 
developing system over 
Pacific (12 UTC, 27 May 
2002)

• Bias (grey curves) and std 
dev (black curves) of the 
analysis and forecast 
differences

Earlier tests with EnKF error covariances
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Earlier tests with EnKF error covariances

• Forecast error measured vs. 
analyses from CNTL 
assimilation experiment

• General improvement from 
using EnKF error covariances

• Small improvement also seen 
in scores averaged over 2 
week forecast-analysis 
experiments

• Should revisit, now 4D-Var 
and EnKF has also been 
improved



Spatial and spectral correlation localization

• Approach for modelling correlations very different in operational 
variational system vs. EnKF:

– homogeneous correlations (Var)

– independently estimated at each grid-point (EnKF)

• When correlations estimated from a finite sample size, neither is 
likely to be optimal

• Averaging of correlations over a local region should be better:

– reduce sampling error through averaging

– maintain most of spatial/flow dependence of correlations

• Spatial averaging of correlations (convolution) is equivalent to
localization of correlations in spectral space (multiplication) 
[from Buehner and Charron (2007) QJRMS]
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Spatial and spectral correlation localization

• Idealized 1-D example using prescribed “true” heterogeneous 
correlations and estimated correlations from 30 realizations

• Spatial localization cannot improve short-range correlations

• Spectral localization cannot remove long-range spurious correlations

• Combination seems to give best result

Original              Spatial localization     Spectral localization           Combined
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Spatial and spectral correlation localization

Original               Spatial localization     Spectral localization         Combined

• For this example, a unique optimal combination of 
spatial and spectral localization exists (minimum 
rms error of correlations)

• Spectral localization dramatically improves local 
estimate of correlation length scale: (-d2C/dx2)-1/2

• With too much spectral localization, start to loose 
heterogeneity (dashed)
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Spatial and spectral correlation localization

• Apply in variational system, similar 
technique as spatial localization

• Elements of control vector 
determine local contribution (in 
spectral space) of members to 
analysis increment:

x = S-1 (S(ek – <e>))o(Csp
1/2 k)

• Use ensemble of 266 members 
generated from an ensemble of 
3D-Var forecast-analysis 
experiments

• Spectral correlations forced to zero 
beyond total wavenumber 
difference of 10

Homogeneous  Spectral localization  Heterogeneous
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Spatial and spectral correlation localization

Homogeneous             Spectral localization             Heterogeneous

• Like with homogeneous and isotropic correlations, still need to apply 
spatial localization to damp long-range spurious correlations

• However, with current approach combining spectral and spatial 
localization would result in very large control vector

• Wavelet-diagonal approach has similar spectral-spatial localization



Plan for testing EnKF covariances in 4D-Var

• Prompted by workshop planned for November 2008 in Argentina

• Currently, EnKF and 4D-Var are too different to allow useful 
comparison: horizontal resolution, deterministic vs. probabilistic, etc.

• Design experiments to isolate specific differences:

1) standard EnKF: use ensemble mean for verification (low-res)

2) “ deterministic” EnKF: additional member with no perturbations to 
simulate obs or model error (low-res)

3) incremental “ deterministic” EnKF: additional deterministic 
member at higher horizontal resolution than EnKF ensemble

4) incremental 4D-Var with ensemble-based B: ensemble-based 
error covariances at beginning of assimilation window with same 
localization as EnKF

5) incremental 4D-Var with static B: same as operational 
deterministic analysis system



Plan for testing EnKF covariances in 4D-Var

Specific differences whose impact could be evaluated:

• smoothing of ensemble mean relative to deterministic forecast: 

1) standard EnKF vs. 2) “deterministic” EnKF at same resolution

• different analysis approach with equal covariances at beginning of 
assimilation window:

3) incremental “deterministic” EnKF vs. 4) incremental 4D-Var with 
ensemble-based B 

• *impact of flow-dependent ensemble-based covariances in 4D-Var:

4) ensemble-based error covariances vs. 5) static covariances


