

Work at JMA on Ensemble Forecast Methods

Hitoshi Sato

Climate Prediction Division Japan Meteorological Agency

Workshop on Ensemble Prediction 7-9 November 2007 ECMWF, Reading, UK

Part I

 Evidence of growing bred vector associated with the tropical intraseasonal oscillation (JMA monthly forecast group and Kyoto University)

Part II

- Medium-range EPS and Typhoon EPS using initial perturbations with singular vectors
 - (JMA medium-range ensemble group)

Part

I Evidence of Growing Bred Vector Associated with the Tropical Intraseasonal Oscillation

<u>Hitoshi Sato</u>⁽¹⁾, Akira Ito⁽¹⁾, Shuhei Maeda⁽¹⁾, Yoshimitsu Chikamoto⁽²⁾, Hitoshi Mukougawa⁽³⁾, and Takuji Kubota⁽⁴⁾

(1) Climate Prediction Division, Japan Meteorological Agency

- (2) Center for Climate System Research, University of Tokyo
- (3) Disaster Prevention Research Institute, Kyoto University
- (4) Earth Observation Research Center, Japan Aerospace Exploration Agency

Madden-Julian Oscillation (MJO)

The mutual interaction between convection and large-scale motions is the key for MJO, but the detailed mechanism for its slow phase speed has not been resolved.

Predictable period of MJO is about 1 week, very limited compared with its long period.

Serious problems in initial perturbations for ensemble forecasts of the MJO in the operational JMA Ensemble Prediction System (EPS).

Observed Velocity Potential at 200hPa (X200)

1 Jan 2004

Initial perturbations have too large amplitude to predict the MJO

- We are going to create initial perturbations in the tropics which are adequate to assess the predictability of the MJO.
 - Modify the operational Breeding of Growing Modes (BGM) method to obtain initial perturbations.
 - Obtain growing mode associated with the instability of the MJO (Chikamoto et al., 2007).
- The obtained perturbations are introduced in the operational monthly EPS.

For further studies:

- Dependence of predictability of the MJO on its phase and activity.
- Predictability of the influence of the MJO to the extratropical circulation.

Modification of the BGM method

	Old version	Modified version
	for NH+TR	for the Tropics
Perturbation Area	20S-90N	20S-20N damped in the extratropics
Norm	Z50	ο <u>χ200</u>
Magnitude of norm (% of the climatological	14.5 (%) rms variance)	0.1~50.0 (%)
Renormalization	every 12h	r every 24hr
Orthogonalization	every 24hr	every 24hr
Ensemble member	24	2

- The model used in this study: T106L40 (JMA-GSM0305)
- The 2nd BV is almost identical to the 1st BV
- Analyzed period: Nov. 2003 Jan. 2004

Observed MJO (10S-10N)

 Existence of large-scale unstable mode in the tropics suggests that the MJO is linearly unstable to infinitesimal perturbations

The large-scale mode is characterized by a baroclinic structure with dominant zonal wavenumber 1 components in the tropics.

X-T Diagram of the 1st BV X200 averaged over 10S-10N

- Large-scale mode: a clear spectral peak at eastward propagating WN1 component with a period of about 15days (a phase speed of 30m/s).
- Convective mode: spectral peak is weak, and small-scale components

Influence of Tropical Perturbation to the Extratropics Time Evolution from 18 Dec 2003

Control Forecast averaged over day 0--4 (anomaly from the climatology)

We have developed tropical initial perturbations for ensemble prediction by modifying the operational BGM method

- Obtained perturbations depend on the magnitude of norm: larger than 3.3% of clim. variance: large-scale mode smaller than 1% of clim. variance: convective mode
- Large-scale mode is characterized by growing eastward propagating zonal wavenumber 1 components of the first baroclinic structure with a phase speed of 30m/s, which suggests that MJO is unstable to infinitesimal perturbation

The Obtained perturbations are operational since March 2007.

Medium-range EPS and Typhoon EPS using Initial Perturbations with Singular Vectors

Acknowledgements: Munehiko Yamaguchi⁽¹⁾, Ryota Sakai⁽¹⁾, and Masayuki Kyouda⁽²⁾

(1) Numerical Prediction Division, Japan Meteorological Agency(2) Climate Prediction Division, Japan Meteorological Agency

Specifications of JMA medium-range EPS

		Current Version	New Version (from 21Nov 2007)
EPS model resolution		TL159L40	TL319L60
Ensemble size		51	51
Fore	cast range	216hours	216hours
	Generator	BGM method	SV method
	Resolution		TL63L40
Perturbation	Area	NH and TR (20S-90N)	NH : 30N-90N
			TR : 20S-30N
	Physics in		NH : simplified dry processes
	linearised model		TR : full processes
	Optimization time		NH : 48 hours
			TR : 24 hours
	Evolved SV		used

 Definition to measure perturbation growth : total energy norm (Barkmeijer et al. 2001)

$$<\delta x, E_{TotalEnergy}\delta x >= \frac{1}{2} \int_{D_{1}} \int_{1}^{40} \left[u'^{2} + v'^{2} + \frac{c_{p}}{T_{r}} T'^{2} \right] d\eta dD$$
$$+ \frac{\varepsilon}{2} \int_{D_{1}} \int_{1}^{9} \frac{L^{2}}{c_{p}T_{r}} q'^{2} d\eta dD + \frac{1}{2} \int_{D} RT_{r} \left(\frac{p'_{s}}{p_{r}} \right)^{2} dD$$

 T_r =300K : reference temperature p_r =800hPa : reference pressure

weight factor on the moist energy term $\epsilon = 1/25$ in the medium-range EPS(= 1 in the typhoon EPS)

 c_p : specific heat

at constant pressure of dry air

- L : latent heat of condensation
- R: gas constant

- Upscale energy propagation from potential energy at the middle troposphere up to kinetic energy at the upper troposphere.
- The SV structure represents the baroclinic instability
- Upward energy propagation from moist energy at the lower up to kinetic energy at the upper.
- Upscale energy propagation is not remarkable

Initial and Final Fields of the NH 1st SV for the medium-range EPS Initial time :12UTC on 2 Aug 2004

- Baroclinic small-scale structure with a westward tilt with height at the initial time
- Synoptic scale structure at the final time

Initial and Final Fields of the Tropical 1st SV for the medium-range EPS Initial time :12UTC on 2 Aug 2004

- Perturbation growth in the kinetic fields during optimization time
- localized over the active convection region

Ensemble Spread versus Ensemble Mean RMSE for NH Z500

• Spread in the late range is underestimated in summer.

		Typhoon EPS
Resolution		60(km)x60(km) with 60layers
Initial time		00, 06, 12, 18UTC
Forecast time		132 hours (not fixed)
Number of targeted typhoons		3
Ensemble size		11
Perturbation Area	Generator	SV method
	Resolution	T63L40
	A	Typhoon: $20^{\circ} \times 10^{\circ}$ (target)
	Area	RSMC: 100E-180E, 20N-60N
	Optimization time	24 hours
	Physics in linearised model	Typhoon: Full processes
		RSMC: simplified dry processes

- semi-operational from May 2007
- operational in 2008
- Typhoon intensity forecasting will be supported by 20km-GSM

Vertically accumulated total energy field (Initial time : 00UTC 01 Sep. 2004)

JMA has developed singular vector perturbations for the medium-range EPS and the typhoon EPS.

- The medium-range EPS will be upgraded on 21 November 2007.
- The typhoon EPS will be introduced in 2008.
- Two sets of targeted SVs

<u>medium-range EPS</u>

- Extra-tropical NH (dry SVs)
- Tropics (moist SVs)

typhoon EPS RSMC Typhoon

For further studies

- Development of stochastic physics to represent model error
- Improvements of the EPS model