

Medium-range Ensemble Forecasts at the Met Office

Christine Johnson, Richard Swinbank, Helen Titley and Simon Thompson

ECMWF workshop on Ensembles

Medium-range ensembles at Met Office

- MOGREPS-15 system medium-range ensemble forecasts
- Multi-model ensembles
- Forecasting high-impact weather

Met Office

Met Office Global and Regional EPS, MOGREPS

- Regional ensemble over N.
 Atlantic and Europe (NAE)
- ■T+54
- Aim to assess uncertainty in short-range, eg.:
 - Rapid cyclogenesis
 - Local details (wind etc)
 - Precipitation
 - Fog and cloud

Expected to be made fully operational March 2008

- Nested within global ensemble
- Local ETKF perturbations
- Stochastic physics

Met Office

Met Office medium-range ensemble

MOGREPS-15; 15-day ensemble forecasts

- Developed from MOGREPS short range ensemble system.
- Ensemble system is run at ECMWF, as a "time critical" suite.
- 24 members (control + 23 ETKF-based perturbations), run twice a day (0 and 12 UTC).
- Resolution: N144 (0.833° x 1.25°), 38 levels.
- Regular runs started late March 2006.
- Available from the TIGGE (THORPEX Interactive Grand Global Ensemble) database, from 1st October 2006.

Met Office THORPEX suite

X - ₩ XCdp File Edit Show Servers Windows 2007-08-20 13:45 moths - moths_operational - main - YMD= 20070820	
Main Suite	Run up to 8 members at once.
- quickple - ectrans	1 ¼ hrs Run Forecasts
	1 ¹ / ₄ hrs TIGGE archiving
Lag Suite	_low_priority
- ectrans_ - archive - last_lag	
Cyclone Cyclone Cyclone Cyclone Cyclone Cyclone	
database	
adminj moths_dev _ moths_development moths_ps _ moths_catchup	

Г

Multi-model ensemble

Multi-Model Ensemble

Aim: To reduce forecast errors by combining and calibrating forecasts from different models.

Procedure

From the law of total probability, the multimodel pdf is given by an average of the pdfs from the single-models (Raftery et al, 2005).

$$p_{MM}(x) = \sum_{k=1}^{M} w_k p_k(\overline{x}_k, \sigma_k^2)$$

- w_k weight given to ensemble k
- p_k single model pdf
- \overline{x}_k ensemble mean
- σ_k^2 ensemble variance
- M number of single-model ensembles

Calibration statistics

The bias and MSE are calculated using a moving-average of ensemble data at every grid point and lead time.

$$MSE_{n} = (1 - \alpha)MSE_{n-1} + \alpha(x - y)^{2}$$

where x = forecast
y = observation
$$w_{k} = N / MSE_{k}$$

N=normalization

Multimodel products: Probability plot

Met Office

0.01 0.25 0.5

Mean and spread with Equal Weights

T+156, PMSL

© Crown copyright 2007

Page 12

PMSL, T+156

Men and spread with Model-dependent weights

Mean and spread with Equal Weights

T+156, PMSL

© Crown copyright 2007

Page 15

RMS errors: effect of bias correction

model: ukmo variable: temp 2.5 Effect on the single-2.0 model (Met Office) RMS error 1.5 ensemble mean. **Bias Corrected** .0 Raw 0.5 0.0 0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 lead time model: multimodelunweighted variable: temp 2.5 2.0 Effect on the multi-RMS error model ensemble 1.5 **Bias Corrected** mean. 1.0 Raw 0.5 0.0 0 24 48 72 96 120 216 240 264 288 312 336 360 144 168 192 lead time

(RMS errors, globally averaged over 40 days,

verified against a multi-model analysis)

RMS errors: effect of combination

Brier Skill Scores: Threshold=mean

Use a climatological mean, and globally average over 15 days of data.

Brier Skill Scores: Threshold =90th percentile

Forecasting High-impact weather

Feature-based diagnostics from MOGREPS-15

- Almost all high-impact weather is feature-related e.g. extra-tropical cyclones leading to strong winds/heavy rain in the UK
- Numerical models often do not explicitly represent the severe weather parameters, especially in lower resolution ensembles
- They can however represent the features causing the high-impact weather
- For high-impact weather prediction, focus on post-processing ensemble data through automated identification and tracking of synoptic features
- Analysis of feature tracks and attributes allows evaluation of the potential for high-impact weather

Tropical cyclones

Extra-tropical cyclones

Tropical cyclone ensemble charts

- Tropical cyclones are identified and tracked using 850hPa relative vorticity maxima
- Identifies new storms out to T+144
- Cyclone George: Landfall near Port Headland, winds 195km/hr, 3 deaths

- Mean reduction in forecast errors for ensemble mean compared to deterministic:
- Similar up to T+72 12% at T+96 23% at T+120 (7 months data)

Met Office

Cyclone database & New Year's Eve storm

Met Office

 Tracking scheme uses a combination of forward and backward tracking. It uses extrapolation and 500hPa steering wind to estimate positions, and matches features based on separation distance, type and thickness

Cyclone database: 31/12/2006 example

 Clicking on a feature brings up feature-specific tracks from each ensemble member and matching plumes of intensity measures to identify the potential for high-impact weather

This storm tracked across Scotland, with gusts up to 100mph, leading to the high-profile cancellation of New Year's Eve celebrations and loss of power to 1000s of homes

The cyclone database objectively identifies fronts and cyclonic features in the extra-tropics

Strike probability plots

- At longer lead times, the uncertainty in tracking individual features increases (they may well not exist in the initial analysis).
- The strike probability plots give a broader indication of risk of storms, based on cyclone database data.
- Plots show number of MOGREPS-15 ensemble members with potential for surface gusts> 60 kt in each 24-hour period.

Combined high-impact weather risk map

MOGREPS-15 Probability map for 2m temp <5/>
12hr precip > 10mm, and 10m wind speed > 28kn
DT: DOZ Fri 21/09/2007 VT: 12Z Tue 25/09/2007 lead time 108h
(Ensemble mean PMSL overlain in contours)

Summary

- For the last year and a half the Met Office has been running an experimental medium-range ensemble (MOGREPS-15) using UK member state allocation at ECMWF.
- A key emphasis of our research programme is the development of methods for combining MOGREPS-15 with other forecasts (ECMWF VAREPS, NCEP) in a multi-model ensemble.
- We are also developing a range of tools to highlight the risk of highimpact weather forecast by ensemble prediction systems.
 - Probabilities of exceeding high-impact thresholds
 - Feature-based cyclone diagnostics
 - Tropical cyclone tracks
 - Regime-based diagnostics (GWL)

Any Questions?

Acknowledgements: With thanks to Ensemble Forecast team, Nick Savage, Tim Hewson, Julian Heming, Paul James, Paul Dando, Martin Leutbecher & ECMWF

- Continue contributing ensemble forecasts to TIGGE
- Refine multi-model ensemble
 - e.g. Variance inflation
- Improve model resolution as computer resources allow
 - $38 \rightarrow 70$ levels
 - 90 \rightarrow 60 km
- Possible implementation of:
 - Reforecasts
 - Coupled ocean model
- Expand high-impact products
 - e.g. Cyclone database in N Pacific for T-PARC
- Contribute to development of THORPEX Global Interactive Forecast System (GIFS)

Reliability Diagrams

ECMWF 1.0 1.0 0.8 0.8 Observed Frequency Observed Frequency 0.6 0.6 0.4 0.4 BSS: 0.537 0.997 rel: 0.2 0.2 0.539 res: 0.0 0.0 0.0 0.8 1.0 0.2 0.4 0.6 0.0 Forecast Probability

- Lead time of 72 hours
- Threshold: Temperature greater than the climatological mean
- Globally averaged over 15 days.

0.0

0.2

0.4

0.6

Forecast Probability

0.8

1.0

0.0

0.2

0.4

Forecast Probability

0.621

0.8

1.0

res:

0.6