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Adjoint-based Techniques for

Evaluating Satellite Impact

« Motivation
« Data assimilation adjoint theory
« Exploration of observation adjoint sensitivity using idealized cases
e Assessing observation impact
— Defining the cost function
— Defining the observation impact function
« Applications
— Channel selection
— Justifying the continuation of observing stations
— Identifying systematic observation errors
— ldentifying shortcomings with the data usage
* Future work



Motivation

How can we improve our forecast skill?

Short to medium-range forecast errors are mainly due to errors in the initial
conditions
— How can we improve the quality of the analysis in these regions?

Original motivation was adaptive or targeted observations for FASTEX

— How to identify and sample/observe regions where additional observations are
most likely to have large positive impact on the forecast

— Expectation is that the additional observations in the sensitive regions will
decrease the analysis error and improve the forecast

Improve the use of existing observations
— Assimilate additional observations

— Correct deficiencies in the observation pre-processing or data assimilation
system



Classical Adjoint-based Targeting Methods

FASTEX 1997

* The gradient sensitivity (GS) and singular vector (SV) targeting methods
highlight areas that are highly sensitive to errors in the initial conditions

— GS method uses the adjoint of the forecast model to calculate the sensitivity or
gradient of J with respect to the initial conditions for the forecast.

— SVs identify the possible error structures in the analysis field that grow most
rapidly as they are propagated forward in time by the forecast model

* Assimilation of FASTEX special observations led to both improved and
degraded forecasts

* Neither method takes into account how the data assimilation system will use
the additional observations

— the characteristics of the assimilating algorithm
— the presence of other observations in the area
— neither method provided guidance on where to place the adaptive observations

» Classical adjoint sensitivity represents only the first part of the complete
adjoint NWP problem

 The complete sensitivity includes the adjoint of the data assimilation system



NAVDAS Analysis — NOGAPS Forecast System
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Sensitivity of 24h Forecast Error to ICs
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Assessing the Impact of OOUTC

Observations for NAVDAS-NOGAPS

Impact Sum by Instrument Type Impact*1000 / Ob by Instrument Type
Impact of O0OUTC observations on 24h global forecast error — moist total energy norm (J kg—1) Impact of OOUTC observations on 24h global forecast error — moist total energy norm (J kg—1)
30—days ending 22 Jul 2007 30—days ending 22 Jul 2007
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» Observation impact is routinely generated once per day at 00 UTC
» Operational analyses and innovation vectors from NAVDAS / NOGAPS are used




Data Assimilation Adjoint Theory

] ] _ _ _ X, — analysis vector
Begin with the linear analysis equation x, — background
y — observation vector
J (X, } forward observation
Xa :Xb +K(y—HXb) opérz:tlr
H — Jacobian or tangent linear
where approximation of % (x,,)
R — observation error covariance
_ T T -1 B — background error covariance
K o B H (H B H + R) K — Kalman gain matrix
| — identity matrix

The sensitivities of the analysis to the observations and background are

@Xa _ KT Influence Matrix (Cardinali, 2004)
ay y = HXa
oy

OX g =
Xa — (I — HK)T oy
i 59 |
sl K =1l S

o(HXx,)




« Using the chain rule, the sensitivities of the forecast aspect J to the

observations and background are

8 ox. 81 . d)
oy oy ox, OX .
0

o) _ ox_, 0J _1-HKH
OX,  OX, OX, OX K=BH'(HBH' +R)™

a

« Observation and background sensitivity depend upon
— the structure of the background error correlation
— assumed accuracy of the observations relative to the background (g/ ¢,)
— forward and adjoint observation operators, H and HT
— the amplitude and spatial structure of the initial sensitivity 8J/ox,
— the distribution of the observations



Exploration of Observation Sensitivity using

|dealized Cases

0J/0xa /oy 0J/dxb Observation sensitivity is greater for
analysis observation background |arge_Sca|e targets

sensitivity sensitivity sensitivity
- « Observation sensitivity is greatest
b e along the coastline where the
observation density changes.
~ M h * In the well-observed interior,
— Small-scale targets: background
" sensitivity = analysis sensitivity.
— Large-scale targets: observation
- ® - sensitivity = analysis sensitivity.
.. Aol * Large values of L, imply the
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Observation Sensitivity for a

Hypothetical Flight Path
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*For relatively isolated observations, KT is
large in amplitude and spatial scale.
—If KT projects strongly onto the analysis
sensitivity, the potential change to the
forecast aspect is large.
*For high density observations, KT is small
in amplitude and spatial scale.
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sensitivity is weaker, and the potential
change to the forecast aspect is small.
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Implications for the Forward Analysis Problem

X, =X, +K(y —Hx,)
* For a given observation, the row of KT and column of K are equivalent.

 When the observation is relatively isolated, K is large in amplitude and
spatial scale.

— The observation has more independent information
— The observation will be given more weight in the analysis

— Potential changes to the analysis due to the observation are large in
amplitude and spatial scale

— Use extra caution along edges of satellite swaths; endpoints of satellite
overpasses; boundaries between ocean, and land or sea-ice

« This is not necessarily a good thing — assimilating more observations
helps protect against outliers or incorrect specification of the
background error covariances

« Observations with small innovations are still important — as they affect
K and KT



Observation Sensitivity Summary

 The observation sensitivity gives an estimate of the potential for an
observation to make changes to the analysis with the amplitude and
structure suggested by the analysis sensitivity gradient.

 Weak sensitivity implies that a single observation cannot resolve the
small-scale structures
— It does not imply that the analysis changes will be small, only that the

changes will not be in the direction needed to effectively change the
forecast aspect J

e Strong sensitivity implies that the single observation has the
potential to change the analysis in the direction that will significantly
change J

— For a single observation, this occurs when the length scales of the
analysis sensitivity and the background error correlations are similar

— Targeting of large-scale features may be preferable



Application to Real Problems

Define the cost function J or forecast aspect
— Some function of the model forecast starting from the initial analysis
— Tangent linear approximation limits the forecast length to 3 days or less

Compute sensitivity of J with respect to the initial conditions (e.g.
temperature, moisture, wind fields and surface pressure)

Compute the observation sensitivity

We really want to know whether a given set of observations improve
or degrade the forecast?



NRL Approach to Observation Impact

Observations move the forecast from the background
trajectory to the trajectory starting from the new analysis

A In this context, “OBSERVATION
IMPACT” is the effect of Xq
observations on the difference in

forecast error norms (€4€,)

—
t= 24 hrs

6 hr assimilation window

Langland and Baker (Tellus, 2004), Gelaro et al (2007), Morneau et al. (2006)
e



Steps in Observation Impact Calculation

NAVDAS analysis

and background
FNMOC ops

X, (00UTC), X, (6hfcstfrom18UTC)

Forecast errors
& error norms
T239L30, full physics

{ 08y, 10X, = L' | C(Xpy =X, )

NOGAPS adjoint oe,, 1 o%, = T :C(Xgo _Xt):

T239L 30, includes large-
scale precip

| Sensitivity gradients in
model grid-point space




Observation Impact Equation

5e =<<y—be),KT{§§f - }><(w>{%}>

« The impact of observation subsets (e.g., separate
channels, or separate satellites) can be easily quantified

« Computation always involves entire set of observations;
changing properties of one observation changes the scalar
measure for all other observations

oe? <0.0 the observation is BENEFICIAL
oe? > 0.0 the observation is NON - BENEFICIAL



Nonlinear vs. adjoint estimates of

forecast error

moist_(e24-e30) (blue) & moist_ob_impact (grn)
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Nonlinearity Considerations

 The NRL technique of combining linear adjoint sensitivity gradients on two
trajectories (those of x, and x,) essentially gives higher than first-order
accuracy in the estimation of the observation impact

» Gelaro et al. (2007) examined the effects of nonlinearity on the
interpretation of the partial sums (observation impact binned by platform,
station, channel, etc.)

— Second and third order terms have dependence on innovations and trajectories
starting from x,

— The dominant nonlinearity arises from the quadratic nature of the cost function

— Higher than first-order accuracy is required to adequately capture the
observation impact

— The authors found “no obvious detrimental effects” on the estimated impact for
the major observing systems.

» Recall that observation sensitivity/impact is always in the context of all other
observations

Errico, 2007; Gelaro et al., 2007
I




Applications: Improving the observation

guality and assimilation system

« Assessing the relative impact of observation platforms

e Diagnosing problems with observing systems
— Sat winds example
— Meta data such as Master Station Lists
— Lihue raob station

« Justifying continuation of observing platforms

« Channel selection for high spectral resolution IR sounders
 ldentifying problems with the assimilation system

» Cross-comparisons with other NWP centers

e Optimal observation density for assimilation
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Restricting SSEC MTSAT Winds

500 mb Height Anomaly Correlation
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Radiosonde profile observation impact

Justifying Continuation of Raob Stations
Diego Garcia, Thule AFB Greenland, Vandenberg AFB, US

1 Jan — 28 Feb 2006 Most beneficial raob (04320)
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Channel Selection Methods

(Fourrié and Rabier, 2004; Ruston, Gelaro)

1. Entrc;py-reduction (iterative*; non-adjoint based; Rodgers, 1996; Rabier et al.,
2002

— Computationally efficient;
ER = ylog, (1+h"Bh)

2. Adjoint Sensitivity (iterative*; adjoint; Baker and Daley, 2000; Doerenbecher
and Bergot, 2001)

— Computationally expensive
— Chooses channel that maximizes the observation sensitivity

0J /oy =KT8J 10,

3. Kalman Filter Sensitivity (iterative*; adjoint; Bergot and Doerenbecher, 2002)
— Computationally efficient
— Chooses the channel the gives the maximum decrease in the error variance for J

(65)" =83 /ax, BH(R + HBHT) HTBaJ /ox,

4. Observation Impact (non-iterative; adjoint; Ruston, Gelaro)
— Computational cost proportional to one data assimilation cycle
— Computed in tandem with DA cycle

** Iterative — choose channel with most “value”, update analysis error covariance, which is used
for B in the next iteration.



Channel Selection Methods

 Compute Degrees of Freedom for the Signal (DFS) for
#1-3

 Results for methods #1-3:

— Comparable results, even though channels selected are not the
same

— Adjoint-based methods tend to favor information in sensitive
areas (lower troposphere)

— Approach #1 also includes information for upper troposphere

— A large part of the AMSU and AIRS information comes from the
stratosphere (Rabier, 2006)

— A constant channel set works well too
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Channel

Adjoint-based data selection and QC decisions

NASA/GMAO GEOS
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Forecast Error Reduction (J/Kg)

Adjoint results show that the some AIRS moisture channels
degrade the 24h forecast

Observing system experiments (OSE) corroborate that skills
are increased when AIRS moisture channels are excluded
...Investigation of problem is underway...

Slide courtesy of Ron Gelaro, GMAO
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Data Assimilation

Use of NAVDAS Adjoint

Assessment of AQUA sensors
AMSU/A, AIRS longwave 14-13um,
AIRS shortwave 4.474um, AIRS shortwave 4.180um
AQUA sensitivity specified by channel number: Aug 15-26, 2006
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Inter-comparison between NWP Centers

NRL (NAVDAS and NOGAPS)

— Adjoint constructed using (observation space) analysis operators

GMAO (GEOS-5 - GSI and FVM)

— Exact line by line adjoint of the GSI code

Environment Canada (GEM and 3D/4D-Var)

— 4D-Var dual (PSAS; observation space)
— 3D-Var in observation space
— Adjoint constructed using analysis operators

ECMWEF
— Influence-matrix diagnostics (Cardinali, 2004)
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NAVDAS-NOGAPS GEOS-5

NAVDAS_ADJ AMSU TB Mean Observation Impact HDOO‘]’ All NOAA, All chan
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AMSU-A Ch 8 Impact Comparison
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Validation of Adjoint Approach with OSEs

GMAO performed a series of OSESs, each observing type was
systematically removed from assimilation system

Observation adjoint impact was determined from the control run

The adjoint approach gives observation impact in the context of all
other observations

The OSE approach gives impact relative to control when an
observing system is removed from the assimilation.

The adjoint approach gives an assessment of the complementary
Information in observations



Comparison of adjoint observation impact with OSEs
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Adjoint system as complement to OSEs

Slide courtesy of Ron Gelaro, GMAO
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Influence-matrix Approach

« Compute the influence on the analysis due to the
assimilated observations

 Flow-dependence is gained through the evolved
background error covariance
 NH spring 2003

— 15% of the global influence is due to the assimilated
observations and 85% is due to the background

* Ranking of information
— AMSU-A (22%)
— HIRS(17%)
— SSMI(13%)
— AIREP, QuikSCAT, raob, geo winds (6-8% each)

Cardinali, 2004
I




Average Total Ob Impact vs. Time in Analysis Window

Mean Total OI — August 2004
Southern Hemisphere

Mean Total OI — August 2004
Southern Hemisphere
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Average Ob Impact per data: Southern Hemisphere

Mean OI per data — August 2004
Southern Hemlsphere

Mean OI per data — August 2004
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Assessing the Impact of OOUTC

Observations for NAVDAS-NOGAPS

Impact Sum by Instrument Type Impact*1000 / Ob by Instrument Type
Impact of O0OUTC observations on 24h global forecast error — moist total energy norm (J kg—1) Impact of OOUTC observations on 24h global forecast error — moist total energy norm (J kg—1)
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» Observation impact is routinely generated once per day at 00 UTC
» Operational analyses and innovation vectors from NAVDAS / NOGAPS are used




Summary — Future Work

« Continue monitoring of observation impact in regular
operational and beta assimilation

« |dentify problems with current observations
Ildentify problems with the assimilation system
* AIRS and IASI channel selection

 Inter-comparison study: NAVDAS-GEOS5-Canadian
observation impact
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