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Adjoint-based Techniques for 
Evaluating Satellite Impact

• Motivation
• Data assimilation adjoint theory
• Exploration of observation adjoint sensitivity using idealized cases
• Assessing observation impact

– Defining the cost function
– Defining the observation impact function

• Applications
– Channel selection
– Justifying the continuation of observing stations
– Identifying systematic observation errors
– Identifying shortcomings with the data usage

• Future work



Motivation

• How can we improve our forecast skill?

• Short to medium-range forecast errors are mainly due to errors in the initial 
conditions 

– How can we improve the quality of the analysis in these regions?

• Original motivation was adaptive or targeted observations for FASTEX
– How to identify and sample/observe regions where additional observations are 

most likely to have large positive impact on the forecast
– Expectation is that the additional observations in the sensitive regions will 

decrease the analysis error and improve the forecast

• Improve the use of existing observations
– Assimilate additional observations
– Correct deficiencies in the observation pre-processing or data assimilation 

system



Classical Adjoint-based Targeting Methods
FASTEX 1997

• The gradient sensitivity (GS) and singular vector (SV) targeting methods 
highlight areas that are highly sensitive to errors in the initial conditions

– GS method uses the adjoint of the forecast model to calculate the sensitivity or 
gradient of J with respect to the initial conditions for the forecast.

– SVs identify the possible error structures in the analysis field that grow most 
rapidly as they are propagated forward in time by the forecast model

• Assimilation of FASTEX special observations led to both improved and 
degraded forecasts

• Neither method takes into account how the data assimilation system will use 
the additional observations 

– the characteristics of the assimilating algorithm 
– the presence of other observations in the area
– neither method provided guidance on where to place the adaptive observations

• Classical adjoint sensitivity represents only the first part of the complete 
adjoint NWP problem

• The complete sensitivity includes the adjoint of the data assimilation system
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is the 
sensitivity of J
with respect to 
the initial 
conditions

J is the 24-hr 
vertically-
integrated 
moist static 
energy error 
norm

6-hr accumulated precip, blended 
MW and IR product (Joe Turk, NRL)
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Assessing the Impact of 00UTC 
Observations for NAVDAS-NOGAPS

Total impact as a function of observing 
platform

Total impact per observation

• Observation impact is routinely generated once per day at 00 UTC
• Operational analyses and innovation vectors from NAVDAS / NOGAPS are used 



Data Assimilation Adjoint Theory

Begin with the linear analysis equation

where

The sensitivities of the analysis to the observations and background are
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Observation and Background Sensitivity

• Using the chain rule, the sensitivities of the forecast aspect J to the 
observations and background are

• Observation and background sensitivity depend upon 
– the structure of the background error correlation 
– assumed accuracy of the observations relative to the background (εr/ εb)
– forward and adjoint observation operators, H and HT

– the amplitude and spatial structure of the initial sensitivity 
– the distribution of the observations
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Exploration of Observation Sensitivity using 
Idealized Cases

∂ ∂ bJ x∂ ∂ aJ x ∂ ∂J y

2D univariate height analysis
Ob error = background error = 1.0, 
Lb = 2.42dx

2 1.0rε =

• Observation sensitivity is greater for 
large-scale targets

• Observation sensitivity is greatest 
along the coastline where the 
observation density changes.

• In the well-observed interior, 
– Small-scale targets: background 

sensitivity = analysis sensitivity.
– Large-scale targets: observation 

sensitivity = analysis sensitivity.
• Large values of Lb imply the 

background errors are primarily in 
the large scales, so the analysis 
uses the observations reduce the 
large-scale errors

• Observation sensitivity will be 
derived from the large targets



Observation Sensitivity for a 
Hypothetical Flight Path

• Observation sensitivity is largest 
when changes in the observation 
density coincide with large-scale 
and amplitude analysis 
sensitivity gradients

• Observation sensitivity is 
maximized when the observation 
is strongly projected onto ∂J/∂xa
by the adjoint of the assimilation 
operator KT

• Background sensitivity tends to 
be large (and of opposite sign) 
when the observation sensitivity 
is large 
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20 height obs with εr/εb = 0.1; Lb = 3.6dx; 
innovation = 1.0



Understanding Observation Sensitivity

∂ ∂T JH y∂ ∂ aJ x

Row of KT for each observation 

∂ ∂ = ∂ ∂T
aJ Jy K x

•For relatively isolated observations, KT is 
large in amplitude and spatial scale.

–If KT projects strongly onto the analysis 
sensitivity, the potential change to the 
forecast aspect is large.

•For high density observations, KT is small 
in amplitude and spatial scale.

–Projection of KT onto the analysis 
sensitivity is weaker, and the potential 
change to the forecast aspect is small.



Implications for the Forward Analysis Problem

• For a given observation, the row of KT and column of K are equivalent.

• When the observation is relatively isolated, K is large in amplitude and 
spatial scale.
– The observation has more independent information
– The observation will be given more weight in the analysis
– Potential changes to the analysis due to the observation are large in 

amplitude and spatial scale
– Use extra caution along edges of satellite swaths; endpoints of satellite 

overpasses; boundaries between ocean, and land or sea-ice

• This is not necessarily a good thing – assimilating more observations 
helps protect against outliers or incorrect specification of the
background error covariances

• Observations with small innovations are still important – as they affect  
K and KT

= + −( )a b bx x K y Hx



Observation Sensitivity Summary

• The observation sensitivity gives an estimate of the potential for an 
observation to make changes to the analysis with the amplitude and 
structure suggested by the analysis sensitivity gradient. 

• Weak sensitivity implies that a single observation cannot resolve the 
small-scale structures
– It does not imply that the analysis changes will be small, only that the 

changes will not be in the direction needed to effectively change the 
forecast aspect J

• Strong sensitivity implies that the single observation has the 
potential to change the analysis in the direction that will significantly 
change J
– For a single observation, this occurs when the length scales of the 

analysis sensitivity and the background error correlations are similar
– Targeting of large-scale features may be preferable



Application to Real Problems

• Define the cost function J or forecast aspect
– Some function of the model forecast starting from the initial analysis
– Tangent linear approximation limits the forecast length to 3 days or less

• Compute sensitivity of J with respect to the initial conditions (e.g. 
temperature, moisture, wind fields and surface pressure)

• Compute the observation sensitivity

• We really want to know whether a given set of observations improve 
or degrade the forecast?
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Observations move the forecast from the background 
trajectory to the trajectory starting from the new analysis

In this context, “OBSERVATION 
IMPACT” is the effect of 

observations on the difference in 
forecast error norms (ef-eg)

NRL Approach to Observation Impact
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• The impact of observation subsets (e.g., separate 
channels, or separate satellites) can be easily quantified

• Computation always involves entire set of observations; 
changing properties of one observation changes the scalar 
measure for all other observations
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When summed over the entire innovation 
vector …

is an approximation of e24 -e30

Adjoint-based ob impact accounts for 
~84% of actual error difference

Includes large-scale precip, no convection

e30

e24

Cost function is a quadratic measure of 
the vertically-integrated (sfc to 150 hPa) 
moist-energy weighted forecast error. 
Units of e-norm = J / kg

Nonlinear vs. adjoint estimates of 
forecast error
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Nonlinearity Considerations 

• The NRL technique of combining linear adjoint sensitivity gradients on two 
trajectories (those of xa and xb) essentially gives higher than first-order 
accuracy in the estimation of the observation impact              

• Gelaro et al. (2007) examined the effects of nonlinearity on the
interpretation of the partial sums (observation impact binned by platform, 
station, channel, etc.)

– Second and third order terms have dependence on innovations and trajectories 
starting from xa

– The dominant nonlinearity arises from the quadratic nature of the cost function
– Higher than first-order accuracy is required to adequately capture the 

observation impact
– The authors found “no obvious detrimental effects” on the estimated impact for 

the major observing systems. 

• Recall that observation sensitivity/impact is always in the context of all other 
observations

Errico, 2007; Gelaro et al., 2007



Applications: Improving the observation 
quality and assimilation system

• Assessing the relative impact of observation platforms

• Diagnosing problems with observing systems
– Sat winds example
– Meta data such as Master Station Lists
– Lihue raob station

• Justifying continuation of observing platforms

• Channel selection for high spectral resolution IR sounders

• Identifying problems with the assimilation system

• Cross-comparisons with other NWP centers

• Optimal observation density for assimilation



SATWIND data 
denial experiment

Date: Jan-Feb 2006

Issue: Large innovations 
and non-beneficial 
impact from satwinds at 
edge of coverage areas 

Action Taken: Ob data 
removed if > 39° from 
satellite sub-point – gave 
3-hr improvement in 
SHEM NOGAPS 
forecast skill 



Northern Hemisphere Southern Hemisphere

Restricted Winds
Control

February 16 – March 27, 2006

Restricting SSEC MTSAT Winds 
500 mb Height Anomaly Correlation



1 Jan – 28 Feb 2006

On recent UKMO blacklist 
Most beneficial (< - 0.1 J kg-1)
Beneficial (-0.01 to -0.1 J kg-1)
Non-beneficial (0.01 to 0.1 J kg-1)

Most beneficial raob  (04320)

Least beneficial 
raob  (84401)

Combines all separate temperature, wind, moisture, and 
height impacts at all levels of radiosonde profile 

Radiosonde profile observation impact
Justifying Continuation of Raob Stations

Diego Garcia, Thule AFB Greenland, Vandenberg AFB, US



Channel Selection Methods
(Fourrié and Rabier, 2004; Ruston, Gelaro)

1. Entropy-reduction (iterative*; non-adjoint based; Rodgers, 1996; Rabier et al., 
2002)

– Computationally efficient; 

2. Adjoint Sensitivity (iterative*; adjoint; Baker and Daley, 2000; Doerenbecher 
and Bergot, 2001)

– Computationally expensive
– Chooses channel that maximizes the observation sensitivity

3. Kalman Filter Sensitivity (iterative*; adjoint; Bergot and Doerenbecher, 2002)
– Computationally efficient
– Chooses the channel the gives the maximum decrease in the error variance for J

4. Observation Impact (non-iterative; adjoint; Ruston, Gelaro)
– Computational cost proportional to one data assimilation cycle
– Computed in tandem with DA cycle

** Iterative – choose channel with most “value”, update analysis error covariance, which is used 
for B in the next iteration.
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Channel Selection Methods

• Compute Degrees of Freedom for the Signal (DFS) for 
#1-3

• Results for methods #1-3: 
– Comparable results, even though channels selected are not the 

same
– Adjoint-based methods tend to favor information in sensitive 

areas (lower troposphere)
– Approach #1 also includes information for upper troposphere  
– A large part of the AMSU and AIRS information comes from the 

stratosphere (Rabier, 2006)
– A constant channel set works well too



The energy-weighted total error norm in J ·kg-1 for Aug. 19-25, 2006. AMSU channels 
are in red at the bottom of the plot, and AIRS channel number is listed along its 
corresponding error bar.

NRL AIRS Observation Impact 



With AIRS moisture
Without AIRS moisture

Forecast 
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Forecast Error Reduction (J/Kg)

Adjoint-based data selection and QC decisions

H2O Channels

NASA/GMAO GEOS-5

• Adjoint results show that the some AIRS moisture channels 
degrade the 24h forecast

• Observing system experiments (OSE) corroborate that skills 
are increased when AIRS moisture channels are excluded 

…investigation of problem is underway...

Slide courtesy of Ron Gelaro, GMAO



Data Assimilation 
Use of NAVDAS Adjoint
Data Assimilation 
Use of NAVDAS Adjoint

AQUA sensitivity specified by channel number: Aug 15-26, 2006

Assessment of AQUA sensorsAssessment of AQUA sensors
AMSU/A, AMSU/A, AIRS AIRS longwavelongwave 1414--1313µµm, m, 

AIRS shortwave 4.474AIRS shortwave 4.474µµmm, , AIRS shortwave AIRS shortwave 4.1804.180µµmm

Beneficial                      Non-beneficial



Inter-comparison between NWP Centers

• NRL (NAVDAS and NOGAPS)
– Adjoint constructed using (observation space) analysis operators

• GMAO (GEOS-5 – GSI and FVM) 
– Exact line by line adjoint of the GSI code

• Environment Canada (GEM and 3D/4D-Var)
– 4D-Var dual (PSAS; observation space)
– 3D-Var in observation space
– Adjoint constructed using analysis operators

• ECMWF
– Influence-matrix diagnostics (Cardinali, 2004)
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AMSU-A Impact Comparison

Error reduction    Error increase

NAVDAS-NOGAPS GEOS-5

Largest impacts occur in SHEM mid-latitudes in both systems. 

However, AMSU-A has more impact in high latitudes for NOGAPS, 
compared to GEOS-5 



AMSU-A Ch 8 Impact Comparison

NAVDAS-NOGAPS GEOS-5



Validation of Adjoint Approach with OSEs

• GMAO performed a series of OSEs, each observing type was 
systematically removed from assimilation system

• Observation adjoint impact was determined from the control run

• The adjoint approach gives observation impact in the context of all 
other observations

• The OSE approach gives impact relative to control when an 
observing system is removed from the assimilation.

• The adjoint approach gives an assessment of the complementary 
information in observations
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Ron Gelaro, GMAO
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SH observations
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July 2005 00z
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Slide courtesy of Ron Gelaro, GMAO



Influence-matrix Approach

• Compute the influence on the analysis due to the 
assimilated observations

• Flow-dependence is gained through the evolved 
background error covariance

• NH spring 2003
– 15% of the global influence is due to the assimilated 

observations and 85% is due to the background
• Ranking of information

– AMSU-A (22%)
– HIRS(17%)
– SSMI(13%)
– AIREP, QuikSCAT, raob, geo winds (6-8% each)

Cardinali, 2004



Average Total Ob Impact vs. Time in Analysis Window

4D-Var

3D-Var

3D-FGAT

Environment 
Canada 
(Simon Pellerin
Stéphane Laroche, 
Josée Morneau, 
Monique Tanguay)

4D-Var 3D-FGAT

3D-Var



Average Ob Impact per data:  Southern Hemisphere

4D-Var 3D-FGAT

3D-Var

Environment 
Canada 
(Simon Pellerin
Stéphane Laroche, 
Josée Morneau, 
Monique Tanguay)

4D-Var
3D-FGAT

3D-Var



Assessing the Impact of 00UTC 
Observations for NAVDAS-NOGAPS

Total impact as a function of observing 
platform

Total impact per observation

• Observation impact is routinely generated once per day at 00 UTC
• Operational analyses and innovation vectors from NAVDAS / NOGAPS are used 



Summary – Future Work

• Continue monitoring of observation impact in regular 
operational and beta assimilation 

• Identify problems with current observations

•Identify problems with the assimilation system

• AIRS and IASI channel selection

• Inter-comparison study: NAVDAS-GEOS5-Canadian 
observation impact 



The End !
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