Future opportunities from MTG and Post-EPS

Johannes Schmetz, Rolf Stuhlmann, Peter Schlüssel and many colleagues

EUMETSAT

Darmstadt, Germany

Content:

- EUMETSAT programmes: current and future
- Current utilisation => best first guess for future
- Meteosat Second Generation
- Evolution to MTG
- EUMETSAT Polar Programme/Metop
- Evolution to Post-EPS
- A look at (or gleaning from) our partner NOAA/NESDIS
- Examples for future opportunities
- Importance of calibration

FROM THE EUMETSAT CONVENTION

- "The <u>primary</u> objective ... is to establish, maintain and exploit European systems of operational meteorological satellites....."
- "A further objective ... is to contribute to the operational monitoring of the climate and the detection of global climatic changes."

EUMETSAT's mission is:

- To deliver cost efficient operational satellite data and products satisfy requirements of its Member States,
- taking into account the recommendations of the World Meteorological Organization.

Current Space Based Components of the Global Observing System

EUMETSAT Programme Planning

Meteosat Second Generation: A breakthrough for meteorology

- Imager with 12 spectral channels
- Full-disk repeat cycle of 15 minutes
- Spatial sampling 3 km (1km for high resolution visible channel)
- On-board calibration for infrared channels
- GERB instrument => radiation
 budget
- Meteosat-8 (2002)
- Meteosat-9 (2005)
- Two more to follow

Twelve spectral channels of Meteosat Second Generation

• so far in space Meteosat-8 and -9

Winds for Numerical Weather Predictions (see also presentation by M. Forsythe on 3 September)

Winds from tracking atmospheric motions

here: 10.8 µm channel

R. Borde, 2006

Observing the cradle of hurricanes: Combination of VIS images from Meteosat- 8 tracks Hurricane Isabel (September 2003)

Fire detection from MSG (=> perspective with MTG)

Forest fires in Greece

Meteosat-9, 25 August 2007, 1200 UTC

Modis on Aura

Meteosat monitors onset of convection

M. König, 2006

Lifted index at 1200 UTC

10.8µm image at 1200 UTC

10.8µm image at 1800 UTC

Example of Convective Cloud Mask Product from MSG

Example of a climate product: Outgoing Longwave Radiation (OLR) (courtesy M. König)

EC

Bias GERB – SEVIRI: -1.3 to -1.9 Wm⁻²

Future geostationary programme

Meteosat Third Generation (MTG)

Focus is on Numerical Weather Prediction and Nowcasting.

Candidate missions:

- High Resolution Fast Imagery (HRFI) mission.
- Full Disk High Spectral Imagery (FDHSI) mission.
- Infrared Sounding (IRS) mission.
- Lightning Imagery (LI) mission.
- UV-VIS Sounding (UVS) mission.

The need date is 2015. Technical analysis with ESA.

MTG Imagery Missions

- MTG imagery missions served by a Flexible Combined (FC) imager
- Use of in-orbit spare satellite for rapid scan

FDHSI mission (continuation of MSG-SEVIRI): FC imager on the operational satellite in Full Disk mode with 10 min repeat cycle

HRFI mission (continuation of Rapid Scan):

FC imager on fully commissioned in-orbit hot standby in Rapid Scan mode over 1/4 of Full Disk with 2.5 min repeat cycle

\mathbf{n}		Coverage	Repeat cycle
	FDHSI mission	Full Disk	10 min
	HRFI mission	1/4 FD	2.5 min
		IE I SAI	

MTG Imager Requirements

	Meteosa	at 1 st Gene	ration	Meteosat 2 nd Generartion			Meteosat 3 rd Generation			
'Core' channels	Central wavelength (µm)	Width (FWHM) (µm)	Spatial Sampling (km)	Central wavelength (µm)	Width (FWHM) (µm)	Spatial Sampling (km)	Central wavelength (µm)	Width (FWHM) (µm)	Spatial Sampling* (km)	
FC - VIS 0.4							0.444	0.06	1.0	
FC -VIS 0.5							0.510	0.05	1.0	
FC -VIS 0.6	0.7	0.35	2.5	0.635	0.08	3.0	0.645	0.08	0.5	
FC -VIS 0.8				0.81	0.07	3.0	0.86	0.07	1.0	
FC -NIR 0.9							0.96	0.06	1.0	
FC -NIR 1.3							1.375	0.03	1.0	
FC -NIR 1.6				1.64	0.14	3.0	1.61	0.06	1.0	
FC -NIR 2.1							2.26	0.05	• 0.5	
FC -IR 3.8 *				3.9	0.44	3.0	3.8	0.40	1.0	
FC - IR 6.7	6.1	1.3	5.0	6.3	1.0	3.0	6.3	1.00	2.0	
FC - IR 7.3				7.35	0.5	3.0	7.35	0.50	2.0	
FC - IR 8.5 *				8.7	0.4	3.0	8.7	0.40	2.0	
FC -IR 9.7				9.66	0.3	3.0	9.66	0.30	2.0	
FC -IR 10.8	11.5	1.9	5.0	10.8	1.0	3.0	10.5	0.7	1.0	
FC -IR 12.0				12.0	1.0	3.0	12.3	0.5	2.0	
FC -IR 13.3				13.4	1.0	3.0	13.3	0.60	2.0	
Repeat Cycle :	: 30 min				15 min			10 min		

ECMWF Seminar 2007, Recent Developments in the use of Satellite Observations in NWP

MTG Infrared Sounder (IRS)

	Mission Band	Frequency range cm ⁻¹		e Main	Main Contribution	
	IRS-1 IRS-2 IRS-3 IRS-4 IRS-6 IRS-7	700 770 980 1070 1600 2000	770 980 1070 1210 2000 2175	Sur	CO ₂ face, Clouds O ₃ face, Clouds	
Letter de	Spec.re Full C	hannels es. 0,62 1/ Disk Cove Area Co	erage	Coverage 18°×18° 18°×6°	Repeat cycle 30 min 10 min	

MTG InfraRed Sounder (IRS)

MTG Infrared Sounder (IRS)

Hyperspectral IR sounding with focus on time evolution of vertically resolved water vapour structures

Priorities IRS Mission

- Atmospheric dynamic variables with high vertical resolution (e.g. water vapour flux, wind profile, transport of pollutant gases)
- More frequent information on Temperature and Humidity profiles for NWP (regional and global)
- Monitoring of instability / early warning of convective intensity
- Cloud microphysical structure
- support chemical weather and air quality applications

Benefits of high-spectral over broad-band measurements!

Total Precipitable Water (TPW) from high-spectral (HES) data much improved over current broadband (GOES-12 + forecast).

Menzel et al. (2007)

Root Mean Square E	rror
Forecast:	0.40
ABI like + fcst:	0.35
GOES 12 + fcst:	0.34
HES + fcst:	0.16

Information content

The relative vertical information is shown for radiosondes, a highspectral infrared sounder and the current broad-band GOES Sounder. The highspectral sounder is much improved over the current sounder.

Figure courtesy of A. Huang

Greatly Improved Atmospheric Motion Vectors with hyperspectral sounder (*Figure courtesy of C. Velden*)

Current GOES PH PV) LON PW = (350, 925)

MTG Lightning Imaging Mission

User Request: detect 90% of lightest events In Cloud (IC), Cloud to Cloud (CC), and Cloud to Ground (CG)

FOV	16° Earth Disk ~ 80% of the Full Disk
IFOV – Spatial Resolution	10 km (45 degree North)
Wavelength	Neutral oxygen line OI(1) at 777.4 nm
Integration time	2ms - 1ms optimised to meet DE and FAR
Discharge optical pulse	0.5ms
Energy range	4 - 400 μ Jm ⁻² sr ⁻¹
Detection Efficiency (DE)	>90% - 40% for any individual event
False Alarm Rate (FAR)	< 1 flash/sec (averaged over the full
	Earth, assuming 50% cloud cover)
Repeat cycle	continuous (as integration time)
Accuracy	intensity better 50% (20% goal)

Co-registration HRFI/FDHSI: better than 1 IFOV

event: single CCD-pixel above energy threshold integrated over time (1 - 2 ms)

group: optical pulse associated with a single discharge of a CG return stroke or a recoil streamer of IC/CC

flash : lightning flash, consisting of several discharges - strokes/recoil streamer - separated by 50-300 ms close in space

(65 % of all flashes consists of more than 5 groups)

(90% of all flashes have a discharge event with radiances above 10 μ Jm⁻²sr⁻¹)

Continuation and enhancement of Geostationary Services

Absorbed Shortwave Radiation			
Active Fire Detection / Monitoring			
Aerosol/Dust Detection			
Aerosol Optical Thickness			
Aerosol Particle Size			
e Profile			
ature Profile			
ormation			
Мар			
Cloud Coverage			
Cloud Ice Water Path			
Cloud Imagery			
Cloud Layers / Heights and Thickness			
Cloud Liquid Water			
Cloud Mask			
Cloud Optical Depth			
Cloud Particle Size Distribution			

All Sky Radiances
Rainfall Potential and Probability
Rainfall Rate/ Multisensor QPE
Reflected Solar Radiative Flux TOA
Scene Analysis
Sea & Lake Ice/Age
Sea & Lake Ice/Concentration
Sea & Lake Ice/ Displacement and Direction
Sea & Lake Ice/Extent and Characterization
Sea Surface Temper <mark>ature</mark>
Snow Cover
SO ₂ Concentration
Surface Albedo
Surface Emissivity
Total Precipitable W <mark>ater</mark>
Total Water Content
Turbulence
Upward Longwave Radiation at Surface
Vegetation Fraction LAI
Vegetation Index
Visibility
Volcanic Ash
Wind Divergence

Service supported by:

MTG Flexible Combined Imager

MTG Infrared Sounder MTG Lightning Imager UMETSAT ------

"Mesoscale" Atmospheric Motion Vector Algorithm (courtesy J. Mecikalski)

Convective initiation (courtesy J. Mecikalski)

Satellite data valid at: 2000 UTC 4 May 2003

These are 1 hour forecasted CI locations!

• Satellite-based CI indicators provided *30-45 min advanced notice* of CI in E. and N. Central Kansas.

• Methods provide ~65% POD scores for 1-hour convective initiation.

MTG will provide continuity of EUMETSAT Services

Polar-orbiting Satellites (Metop)

EUMETSAT Polar System (EPS)

EUMETSAT Polar System (EPS):

- a series of three Metop satellites
- operate over at least 14 years.
- Metop A launched in October 2006
- Metop also contributes to oceanography, environmental observations and fosters research

EUMETSAT Polar System: Space Segment Metop Satellite, Instruments and Missions

Metop instruments: Continuity + heritage + novel technology

- Continuity:
- - Imaging => AVHRR (NOAA)
- - Sounding => HIRS (NOAA), MHS, AMSU-A (NOAA)
- •
- Science heritage:
- - GOME-2 => ozone, aerosol, trace gases (ESA)
- - ASCAT => ocean surface winds (ESA)
- Novel:
- Hyperspectral sounding => IASI (CNES)
- Radio-occultation => GRAS

- => Initial Joint Polar System with NOAA

Global imaging

IASI

• Covered by dedicated talk by P. Schlüssel

GOME-2 Ozone measurements

Provided courtesy of DLR (O3MSAF) http://wdc.dlr.de/sensors/gome2/index.html

Winds from ASCAT compared with ECMWF

ASCAT: 20061027 17:30Z lat lon: 20.00 -120.00

Courtesy, ESA, 2006

Level-2 processing at OSI-SAF, KNMI

Winds over polar regions (composite from MODIS), Key et al. 2003 \Rightarrow Large positive impact on forecasts

need to derive winds from AVHRR

EUMETSAT Strategic Guidelines for Post-EPS

EUMETSAT will remain committed, as a minimum and top priority, to the mid - morning sounding mission

There is a joint commitment between EUM Member States and NOAA for a future Polar System (JPS)

Possible EUMETSAT contribution to a JPS fully open:

- instruments across the various orbits;
- satellites on different orbits; etc.

EUMETSAT will keep responsibility for at least one end-to-end system

Need date for the core mission with instruments for Atmospheric Temperature and Humidity Sounding 2018 (1st piority), followed by the remaining missions in 2020

Future polar programme Post-EPS

For Post - EPS the <u>user needs</u> in the following areas are considered as result of <u>User Consultation through Expert Groups</u>:

Atmospheric Chemistry; Atmospheric Sounding and Wind Profiling; Climate Monitoring; Cloud, Precipitation and Large Scale Land Surface Imaging; Ocean Surface Topography and Imaging; Nowcasting and NWP.

The need date is 2019 and the mission will be balanced with GMES and GEO needs. Joint technical analysis with ESA.

Post-EPS Candidate Missions

Name	Rank
High-Resolution Infrared Sounding (IRS)	3
Microwave Sounding (MWS)	3
Scatterometry (SCA)	3
VIS/IR Imaging (VII)	3
Microwave Imaging (MWI) - Precipitation	2
Microwave Imaging (MWI) - Ocean and Land	2
Radio Occultation Sounding (RO)	2
Nadir viewing UV/VIS/NIR - SWIR Sounding (UVNS)	1
Doppler Wind Lidar (DWL)	1
Multi-viewing, Multi-channel, Multi-polarisation Imaging (3MI)	1
Dual View Radiometry (DVR)	1
Radar Altimetry (ALT)	1

Note: Rank value 3: highest priority

EUMETSAT -----

'Near' simultaneous observations from space for operational Earth observation – Example: The A-Train (courtesy NASA)

Thought on a deployment secenario: 'Near' simultaneous observations from polar orbit for operational Earth observation:

- 4-D Var assimilation makes need for distribution of observations over time less critical
- For process studies and research near simultaneous observations are essential => this will advance understand and utilisation of data
- Trains of satellites might be an option for operational observations ... serves operational (NWP) requirements and fosters research/utilisation

Meteosat-8 monitors deep convective clouds

Red pixels: T6.2 > T10.8

How can this be explained?

Cloudsat explains physics in areas with T6.2 > T10.8 (from Cloudsat website and adapted by Chung et al., 2007)

Input data for IASI simulated spectra for a tropical atmosphere

IASI simulation by X. Calbet, personal ommunication

IASI simulated spectra for a tropical atmosphere

Latitude: 1.68°

A hyperspectral sounder in a geostationary orbit could vertically slice and track the moisture outflow in tropical convective regions

 \Rightarrow an important process in the global water cycle \Rightarrow e.g. moistening of the UTLS

IASI simulation by X. Calbet, personal communication

Reasons behind improvements in NWP due to satellite data *(from Uccellini, 2007)*

- Improvement due to a balance among
 - Observations
 - Data Assimilation & Model technology
 - Computing resources
- Estimated 30 40% of improvement from observations (principally global LEO satellite data) and 60 - 70% from data assimilation and modeling techniques and computing resources

Need to foster utilisation and continuous development has been recognised: => De-centralised applications ground segment: Satellite Application Facilities (SAF)

- Support to Nowcasting and Very Short Range Forecasting
- Ocean and Sea Ice
- Climate Monitoring
- Numerical Weather Prediction
- Land Surface Analysis
- Ozone & Atmospheric Chemistry Monitoring
- GRAS Meteorology
- Support to Operational Hydrology and Water Management
- => BENEFITS:
- Makes use of European expertise,
- Fosters cooperation and utilisation,
- Maximises return on investment

The importance of good satellite calibration => GSICS (Global Space-based Inter-Calibration System)

- To improve the use of space-based global observations for weather, climate and environmental applications through operational inter-calibration of satellite sensors.
- Improve global satellite data sets by ensuring observations are well calibrated through operational analysis of instrument performance, satellite intercalibration, and validation over reference sites
- Provide ability to re-calibrate archived satellite data with consensus GSICS approach, leading to stable fundamental climate data records (FCDR)
- Ensure pre-launch testing is traceable to SI standards
- => Under WMO Space Programme
 - GSICS Implementation Plan and Program formally endorsed
 - at CGMS 34 (11/06)

GSICS: Intercalibrating MSG with IASI

IASI – like instruments will be excellent reference for calibration => climate monitoring

Channel	∆T IASI – Meteosat-8*	∆T IASI – Meteosat-9 *
IR3.9	-0.17	-0.20
WV6.2	-0.24	-0.40
WV7.3	-0.51	-0.14
IR8.7	0.15	0.15
IR9.7	0.17	0.20
IR10.8	0.16	0.07
IR12.0	0.19	0.08
IR13.4	0.44	1.7

*Uncertainty 0.1 – 0.2 K

Conclusion (1)

- Operational satellites do provide important contribution to meteorological services
- Need for continuous development of utilisation techniques (e.g. algorithms, timeliness, interpretation, ...)
- Future satellite missions hold promise for improved weather forecasting, better climate monitoring and better understanding of physical processes
- Realisation of future satellite systems is result of competing and complementary interests from: i) Existing operational requirements, ii) Science and anticipated future applications, iii) Technical constraints (feasibility), iv) Political considerations and v) Affordability

Conclusions (2)

- EUMETSAT satellite systems (Meteosat and Metop) are key elements of the operational space-based observing system
- Continuity and serving the evolving needs of our Member States has highest priority
- EUMETSAT's International partnership (e.g. the Joint Polar System with NOAA) ensures a European contribution to a Global Earth Observation System of Systems (GEOSS) that are mutually consistent and also cost-effective
- EUMETSAT mandate evolves, therefore a further priority is to develop new activities in operational oceanography and atmosphere monitoring jointly with partners (ESA, NOAA,)
- More information (including SAF links): www.eumetsat.int

