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Topics

• Applications of Ocean DA
– Operational Oceanography
– Ocean Synthesis/Reanalysis
– Seasonal – Interannual Forecasting (coupled models)

• Assimilation data sets
– Altimeter sea level anomalies
– The Geoid and the Mean Dynamic Topography
– In Situ data, (T,S) and Argo

• Assimilation techniques
– Bias treatment
– State dependent covariances
– Coupled model assimilation



ECMWF Summer Seminars
September 2007

Operational oceanography at 
the MetO

1/9º Mediterranean

1/3º N. Atlantic and Arctic 1/9º North Atlantic
1º Global

1/9º Arabian Sea

1/4º Antarctic

1/3º Indian Ocean

Boundary data for 
Shelf Seas models

• Model resolution is key to capturing the dynamic processes
• All models in transition to NEMO (MetO will run ¼ global version)
• In Situ and Altimeter data sets are key for assimilation

Several of these datasets available from Godiva2
at www.resc.reading.ac.uk
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Irish Sea –
1.8km 

Resolution

Shelf seas models at MetO

Atlantic Margin Model 
(AMM) – 12km Resolution

Medium Resolution 
Continental Shelf (MRCS) –

6km Resolution

• State of the art model 
developed with POL

• Driven with Met Office 
Numerical Weather 
Prediction

• Can produce a range of output
– tidal, met & density driven currents
– temperature, salinity, seasonal stratification

• Forecasts of tidal currents and sea level elevation 
available years ahead, through NCOF

• Currently assimilation under research
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Key Data for Operational Oceanography

In Situ data from Argo and TAOAltimetric Sea level anomalies
Repeat track
SSH=η
every 10 days
(Topex-Jason)

T,S profiles
to ~1500m
every 10 days

Complementary
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Two Key problems of Altimeter Assimilation

• Projecting the sea surface height signal below 
the surface
– Covariance functions
– Physically based methods 

• How to treat the mean sea surface height or 
Mean Dynamic Topography?
– MDT from elsewhere eg. Ocean model
– Error characteristics very different from Altimeter 

anomalies
– Problem in Observation bias
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Assimilation

Ship Validation
WOCE Cruise

500m

0m

55 N15 S

Assimilation of Satellite Altimeter

Fox and Haines 2003

Global Model 
25km Resolution

Altimeter
SSH_anomaly
ηa

In Situ
T(z)
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US East Coast model
Mellor and Ezer (1991)
• Sea level correlated with subsurface 
density

• Correlations based on model 
variability

Potential problems
• Must perform long model runs to
generate correlations

• Must store and retrieve correlations for
assimilation (which may vary in x,y,t)

• State dependent covariance may be
needed, eg. ENSO v. non-ENSO years,  
(could forecast covariances)

Solid contour = correlation Solid contour = correlation coeffcoeff..
of of ρρ(z)(z) with with ηη of 0.8of 0.8

Covariance vertical projection of sea level
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Altimeter assimilation by thermocline 
displacement Δh

Sea surface height correlated with thermocline displacements
Displacements ∝ Stratification
PV and water mass conserving

Model q(ρ) is preserved by 
Assimilation provided;

Solve for Δh by assuming
deep pressure unchanged • Simple to implement

• Gives flow dependent covariances
• Allows other in situ data to alter water masses
• Can build physical covariances as balancing operators

eg.Var assimilation schemes eg. Weaver et al 2005, QJ

• But won’t work for deep barotropic circulations
eg. at high latitudes

-ρ0gδη

Cooper and Haines (1996)
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A linearized balance operator for global ocean assimilation 
(Weaver et al., 2005, QJRMS)

• Balance Operator based on Observed Ocean Temperature
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Components of the balance operator
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q1 – q4

Twin experiment assimilation of ψ1 every 40 days
4-layer QG box ocean model

ψ 11 –– ψ44

Note q2 – q4 unchanging at assimilation times
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Altimeter Twin in OCCAM 36 level 
PE model assimilating SSH

Fox et al 2001a
Note that subsurface T,S converge
Perhaps now could use Argo to demonstrate in real ocean?

SSH

u,v

ρ
Temp

Salinity

T

ρ

S

SSH

u,v
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Two Key problems of Altimeter Assimilation

• Projecting the dynamic topography signal 
below the surface
– Covariance functions
– Physically based methods 

• How to treat the Mean Dynamic Topography?
– MDT from elsewhere eg. Ocean model
– Error characteristics very different from Altimeter 

anomalies
– Problem in Observation bias
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The Geoid, Altimetry and Ocean 
Dynamic Topography

• Geoid = surface of 
constant gravitational 
potential energy

• Sea level relative to 
Geoid = Dynamic 
Topography (DT) => 
Geostrophic currents

• Altimeters measure 
sea level relative to 
Earth ellipsoid not 
Geoid

• Can only use time-
varying altimetry for 
oceanography 
because Geoid is not 
well known
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The Geoid, Altimetry and Ocean 
Dynamic Topography

Assimilation assumes full DT

DT= MDT + SSH_anomaly
where
MDT = Time mean DT

Like to use
MDT = Mean_SSH – Geoid

In practice
MDT model product

Error characteristics of 
SSH_anomaly and MDT
Completely different

DT= MDT + SSH_anomaly
MDT error represents 
constant observation bias
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Bias in Data Assimilation

• Dee (2006) Review in QJRMS
• 3D Variational formulation easiest to understand (derivable from Bayesian 

analysis; Drecourt et al; 2006)

2J(x,b,c) = (y-b-x)TR-1(y-b-x) +
(x-xf+c)TB-1(x-xf+c) +

(b-bf)TO-1(b-bf) + (bTT-1b +)
(c-cf)TP-1(c-cf)

y =observation                                R =observation error covariance 
x =model state                                B =model background error covariance
b =observation bias O =observation bias forecast error covariance
c =model forecast bias T= observation bias error covariance
Superscript f are forecast values     P =model forecast bias error covariance
Observation operators have been omitted

Minimise J wrt x,b,c

Drecourt et al 2006
Lea et al 2007 (draft)
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Bias in Data Assimilation

• Solution (Analysed variables a)
xa = (xf-cf) + K {(y-bf) – (xf-cf)} K = (B+P) [B+P+O+R]-1

ba = bf + F {(y-bf) – (xf-cf)} F = O [B+P+O+R]-1

ca = cf + G {(y-bf) – (xf-cf)} G = P [B+P+O+R]-1

or xa = (xf-ca) + K1{(y-ba) – (xf-ca)} K1 = B [B+R]-1

y =observation                                R =observation error covariance 
x =model state                                B =model background error covariance
b =observation bias                        O =observation bias forecast error covariance
c =model forecast bias                    P =model forecast bias error covariance

• Usual problems are: (i) Knowing the Covariance errors: O = γbT; P = γcB
(ii) Sequential 3DVar requires bias models:

Can use Persistence        bf(t+1) = ba(t);    cf(t+1) =  βca(t)   (β = 3 month decay)

Drecourt et al 2006
Lea et al 2007 (draft)
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3D-Var cost function with model and 
obs. bias

T 1

f T 1 f

o T 1 o T

f T 1 f

f T 1 f

( ( )) ( ( ))
( ) ( )
( ) ( )
( ) ( )
( ) ( )

J −

−

−

−

−

= + +

+ + +

+

+

+

y - H x b R y - H x b
x - x c B x - x c
b - b T b - b
b - b O b - b
c - c P c - c

x – model state
y – observation
R – observation error covariance
B – background error covariance
H – observation operator

b – observation bias
c – model bias
T – observation bias error covariance
O – obs bias forecast error covariance
P – model bias forecast error covariance 

Model data misfit

Background constraint

Obs bias constraint

Obs bias forecast constraint

Model bias forecast constraint

Drecourt et al 2006
Lea et al 2007 (draft)
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Method:
Analysis equations
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Method applied to Altimeter assimilation in N 
Atlantic model at Met Office

R – observation error covariance
B – background error covariance
T – observation bias error covariance
O – obs bias forecast error covariance
P – model bias forecast error covariance

Simplify by assuming

O = γb T γb =0.01  (b units cm MDT bias) 
P = γc B γc =10-3 (c units cm/day Model drift)
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Original MDT /cm Original MDT error /cm

Combined model mean, 
Singh and Kelly and GOCINA

Rio (2005) MDT error 
(times 5) – use for T

MDT and errors will come from GOCE mission data 

MDT Bias applied to Altimeter assimilation in 
N Atlantic model at Met Office
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Time series of innovations

Mean innovations s.d. innovations

•Time variability and RMS reduced by bias correction
•Obs bias correction most effective in reducing RMS
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Mean Innovations in areas
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Std dev of innovations in areas
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Mean obs bias field (b field)

•MDT lowered north of Gulf Stream, increased in sub-tropical gyre
•Pattern similar for both OBS and OAM. The model bias not significantly 
affecting the MDT estimate.
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Mean model bias field (c field)

cm/day
•Small mean model bias (units cm/day). Model is positively biased north of 
Gulf Stream and negatively biased in the sub-tropical gyre.
•Same pattern (with reversed sign) as b field (using the same info).
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Data Assimilation for Ocean 
Synthesis/Reanalysis

Aims:
Recover ocean signals relevant to climate change 

(1950-present)

Changes in water masses
Changes in Ocean circulation (geostrophic) based on ρ

measurements (eg. thermohaline circulation)
Changes in ocean heat content
Changes in ocean salinity=> hydrological cycle

Infer errors/changes in air-sea fluxes from budgets
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Key Data for Ocean Synthesis/Reanalysis

In Situ data from Argo PFIn situ data
T(z) profiles or
T(z) and S(z) profiles => ρ(z)

Instruments, spatial distribution
and depth ranges vary through time



ECMWF Ocean Reanalysis 3 (ORA3)

• 47 year ocean 
reanalysis from 
ECMWF Seasonal 
Forecasting System 3

• 1° resolution ocean 
model with tropical 
enhancement

• Assimilates T(z) and 
salinity on isotherms 
S(T)

MOC at 26N

* Obs from Bryden et al. (2005)

Atlantic Meridional Overturning Circulation

Balmaseda et al 2007 sub.

Sv

Sv
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Dynamic v. thermodynamic variability

104 CTD profiles
over 10 days in 
W. Equatorial Pacific

Reduced variance in
S(T) => water properties 
not altered by High-freq
waves

Troccoli et al
(1999)

Model Representivity
of S(T) better than for 
S(z) or T(z)
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One point Salinity correlation maps HadCEM 1/3 model

S(z) S(T)

Expect error 
Covariances of 
S(T) to be larger
Scale than S(z) 
=> Useful in 
assimilation of 
Salinity data,
especially for
Reanalysis

Haines et al
(2006)



Generalized observation operator

• Collocate observations on depth, isotherm and isopycnal levels
• By evaluating model-data difference on isotherm or isopycnal 

levels can better assess errors in water mass properties.
• For isotherms:

• Given T,S -> Calculate T(z), S(T) for model and observations
T’(z) = Tb(z) + ΔT(z)
S’(T) = Sb(T) + ΔS(T)    implemented in ECMWF ORA3

• For isopycnals:
• Given T, S -> Calculate Z(ρ), π(ρ) for model and observations

Z’(ρ) = Zb(ρ) + ΔZ(ρ)
π’(ρ) = π b(ρ) + Δπ(ρ)   where π(T,S,p) is “spice”

orthogonal fn. to ρ(T,S,p)
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ECMWF System 3 ocean analysis

T/S

conserved
altη T/S

Changed
insituinsitu ST ,

aa ST ,

T/S

conserved
insituT

', aa ST

• Sequential assimilation (every 10 days)
• In situ and altimeter assimilation
• Geostrophic velocity increments

Second OI using Salinity data to correct the T/S relationship

))(H)((K)()( ''
obooaaaa TSTSTSTS −+=

Assimilation of S(T) not S(z)

Balancing increment on S,
Weaver et al 2005

Note conservation
of water masses =>
Complementary 
data contributions
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Mean Observation Minus Background in selected regions for temperature and salinity
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Vidard et al
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Isopycnal assimilation:
Assimilation of 1 observation profile

T(z), S(z) → z(ρ) , π (ρ) → Assimilate → T(z), S(z)

Density level depth z(ρ) 
before and after assimilation Spiciness increment π (ρ)

Correlation width 60 km Correlation width 400 km

Lea and Smith
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Long window 4dVar
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Data Assimilation for Coupled-Model 
Prediction

Aims:
Seasonal Forecasting eg. El Nino
Interannual-decadal forecasting

Based on Coupled Atmosphere-Ocean models
Ocean initial conditions crucial=> ocean assimilation
Prediction based on Ensembles (average Atm. noise)

Coupled assimilation really required to have initial atmosphere-
ocean boundary layers consistent

Perhaps other properties should also be assimilated eg. Sea Ice, 
Snow cover, Soil Moisture?
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Seasonal Forecasting 

0 1 2 3 4 5 6 7
Forecast time (months)
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Ensemble sizes are  3 (esj6)  and  3 (esj6)
 76 start dates from 19870101 to 20051001
NINO4 SST rms errors

Fc esj6/m1 Fc esj6/m0 Persistence Ensemble sd

S3 Nodata S3 Assim

At ECMWF ocean assimilation
scheme as for Reanalysis ORA3 (Balmaseda)

- Ocean only model run forced
with atmospheric ERA-ops and 
ocean assimilation
- Then coupled to IFS atmosphere
for coupled ensemble forecasts

SST shocks common eg. Stockdale 1997

Direct assimilation into coupled system?
- Latif et al. 2004, nudge SST of coupled 
model: relies on atmos+ocean adjusting
- Coupled 4dVar? => problem with 
atmospheric noise
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Coupled Data Assimilation at JAMSTEC
thanks to Dr Sugiura and Prof. AwajiAwaji

• Assimilation into a fully coupled GCM
• By means of 4D-VAR

– Long assimilation window (9 month)
– Correction of model climatology by parameter 

estimation
– Correction of seasonal to interannual trajectory by 

initialization
– Atmospheric data are also assimilated
– Weather mode is treated as noise
To be suitable for Seasonal to Interannual state 
estimation and prediction
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Control Variables
1. Ocean initial condition
2. Bulk parameters controlling Air-sea fluxes of ;

Momentum

Sensible heat

Latent heat

CDA Assimilation windows

* 97/1 = January of 1997

adjustment factors
(x,y,10daily)

96/1             96/9 97/1             97/9 98/1             98/9

98/7              99/396/7             97/3 97/7              98/3
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Experimental Settings of Coupled DA

• Coupled Model (CFES):
– T42L24 AFES for AGCM
– 1x1deg L45 MOM3 for OGCM
– IARC SeaIce model
– MATSIRO Model for Land

• Observational Data
– Atmosphere: 

• NCEP’s BUFR data U,V,T,Q (10daily)
• SSM/I sea wind scalar x ERA40 wind direction (10daily)

– Ocean: 
• T/P altimeter data(10daily) 
• Reynolds SST (10daily)
• WOA data T,S (monthly ) 
• Ocean Data Assimilation Product T,S(monthly)

• Adjoint Code
– Adjoint OGCM and adjoint AGCM are coupled [Line by line transformation by TAMC,TAF] 
– Temporal averaging of forward field for the adjoint integration is applied to smooth the basic field
– Adjoint AGCM contains damping terms to suppress the strong adjoint sensitivity from weather 

fluctuations.
( )
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The CDA cost function minimisation

Cost variation for the period from Jul1996 Normalized cost variation in the 1990s
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Atmospheric cost terms show some fluctuations with iteration. SST cost significantly reduced.



ECMWF Summer Seminars
September 2007

Coupled DA Seasonal prediction

Top: Firstguess

Bottom: CDA

Red: from Jan.

Blue: from Jul.

Black: Obs.CDA

FG

Error bars are for the spread of ensemble runs with 11-different 
atmospheric initial conditions.  Nino3.4 SST is much more realistic 
in the CDA analysis field. 
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Coupled DA Summary

• The optimizations of ocean initial condition and of bulk 
parameters enable us to reproduce coupled field 
realistically.
– Extraction of coupled/climate mode works to some extent by temporal 

averaging of forward fields and simple damping terms in adjoint code 
which is shown by the reduction of the cost values for coupled field.

– Regarding El Nino, the departures from observation do not grow in the 
9-month assimilation windows which verifies that our CDA works 
properly as a smoother.

• This system is also useful for prediction.
– Bulk parameter adjustment will be useful to represent properly the 

climatological mean state by the Coupled GCM.
– Optimal ocean initial condition fit to the coupled model useful for 

Seasonal-Interannual prediction because it contains proper tendency 
information thanks to the 4d-Var and hence Reduces Shocks.



ECMWF Summer Seminars
September 2007

Hadley Centre Decadal Prediction 
(DePreSys)

Smith et al 2007 Science

HadCM3 coupled model

Assimilation: ANOMALY
- Atm. nudged to ERA15/40
- Ocean nudged to filtered
ocean T, S gridded anal. from
HadCM3 Covariances

all the time running in 
coupled mode

Hindcast ensembles (4-9) 
generated every 
3-6 months through 
1979-2005

Skill in SST, OHC and 
global SAT assessed out
to 9 years ahead 

9yr
Mean
Hind.
Skill
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Sensitivity of DePreSys system to Ocean Assimilation

• DePreSys system implemented on set of NERC compute Clusters (GCEP project)

• Figures show Global surface air temperature and Nino3.4 hindcasts from Jan 1997
during the great 1997 ENSO
• Changing ocean initial conditions can give big increases in skill predicting both strength and 
timing of 1997 ENSO 
• Will this carry over to skill statistics for interannual timescales?

Global Surface Air Temperature (STA) anomaly

Truth

DePreSys
Original

EN2 ocean

New ocean
anomalies

DePreSys
Original

EN2 ocean

ECMWF 
ORA3
ocean

New ocean
anomalies

Ensemble runs started from Jan 1997
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Ocean DA Challenges

• To make most effective use of altimeter data in 
combination with new geoid data; ESA-GOCE mission

• Demonstrate effective combination of Argo and Altimeter 
data through DA and make critical OSE assessments

• Ocean reanalysis for climate? Can this be done more 
effectively than atmospheric reanalyses, eg. using slow 
thermodynamic timescales in the ocean? => CLIVAR-
GSOP (Global Synthesis and Observations Panel)

• Initialising coupled atm.-ocean models for seasonal-
decadal ensemble prediction
– Huge implications if coupled predictions other than for ENSO 

can be demonstrated
• Many other ocean DA challenges not covered eg. 

coastal / biological / medium range NWP


