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Including the stratosphere in NWP models

Canadian Middle Atmosphere Model
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Why include the stratosphere?
Better use of radiance data for NWP

» Assimilate raw radiance measurements rather than pre-processed products that combine
data from different sensors

« Advantages:

— Eliminates errors introduced in the pre-processing

— Radiance quality control can be tailored to the NWP system and
use up-to-date state information

— Faster access to raw radiance data for real-time applications

» Requires an observation operator for each sensor, to simulate radiance measurements
from the forecast model state:

— Fast radiative transfer
— Limb and emissivity adjustments, etc.

« Many tropospheric nadir sounding channels are also sensitive to stratospheric
temperatures, so these must be accurately represented in the NWP system

(Title of this talk: “The importance of satellites for stratospheric data assimilation”
should be
“The importance of the stratosphere for satellite data assimilation”)
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Illustration: AMSU-A and the stratosphere

AMSU-A sensitivity to temperature
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Satellite observations of the stratosphere
used in ECMWEF operations

Nadir sounding data:

Radiances: HIRS, AMSU-A, (AIRS), IASI, (SSMIS)
Ozone: SBUV, Sciamachy, (OMI), (GOMEZ2), (MIPAS), (MLS)

Limb sounding data:

Radiances: (MLS)
RO bending angles: COSMIC, (CHAMP), (GRACE-A), (GRAS)

Issues for data assimilation:
« Information mainly about temperature and total ozone

* No information about humidity (until MLS)
* No direct information about winds (until ADM)



Satellite observations of the stratosphere
used in ERA-40, ERA-Interim

Nadir sounding data:

Additional issues for data assimilation:

Radiances:
Ozone:

VTPR, HIRS, MSU, SSU, AMSU-A
TOMS, SBUV, GOME

Especially concerned with time consistency of reanalysis
Changing data coverage
Inter-satellite biases

model

VTPR

SSuU

AMSU-A
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Special challenges in stratospheric data assimilation

» Dealing with systematic errors (biases):

— In the radiance data
— In the observation operators
— In the forecast model

* The scarcity of wind information:

— Winds inferred from temperature information — determined by
balance constraints embedded in the analysis

— Winds inferred from trace gas observations — determined by
dynamic constraints embedded in the forecast model
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* Dealing with systematic errors

— SSU and cell-pressure leaks
— AMSU-A and the Zeeman effect
— Impact of GPS radio occultation data



Systematic errors and data assimilation

Systematic errors in the observations:
Instrument calibration, environmental effects, ...

Systematic errors in the radiative transfer models:
Spectroscopy, unmodelled physics, discretisation, ...

Uncorrected, these errors cause biases in the analysis that depend on data
coverage (space-time sampling) as well as on details of the assimilation
system (covariance modelling):

Jx)=(x, -x)' B (x, -x)+ [y —h(x)|' R [y — h(x)]

Usually (in NWP) biases in the data / RT model are diagnosed and corrected
against the analysis (or first guess) in the context of all other observations

... but this does not work well in the upper stratosphere



Systematic model errors in the upper stratosphere
T255L60 model currently used for ERA-Interim
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Variational bias correction of radiance data
Interaction with model bias

The analysis may include extra degrees of freedom for radiance bias correction:

J(x,p) = (x, —x)' B (x, —x) + (B, —B)' B,' (B, —B)
+[y —=b(x,)—h(x)] R [y —=b(x,$) - h(x)]

When constrained by enough (?) unbiased observations this method will produce
unbiased analyses, even if the model is biased:

model

abundant observations

v

But if all available observations are allowed to be bias-corrected the
analysis will simply be made to agree with the model background:

\ 4

model

observations

Works well in well-observed regions, or where model errors are small



Limitations of variational bias correction:
Upper stratospheric model bias

Mean temperature [K] 120-hour forecast errors for experiment 1112 : Antarctica
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Adaptive radiance bias correction in the upper stratosphere:

Removal of the large-scale mean signal in SSU

1112 (DA} -

rms and bias (K] CB-FG (red) OB-AN (blue) BIASCCOR (mean)
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Situation improves when SSU Ch3 is not bias-corrected:
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Systematic errors and data assimilation

Systematic errors in the observations:
Instrument calibration, environmental effects, ...

Systematic errors in the radiative transfer models:
Spectroscopy, unmodelled physics, discretisation, ...

Systematic errors in the forecast model:
Radiation, ozone climatology, gravity wave parameterisation, ...

The available observations are the starting point ...

* Models can only be improved based on data
» Are the observations being interpreted correctly?
« Can we resolve inter-satellite biases?
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— Why include a stratosphere in NWP models?
— Satellite observations of the stratosphere
— Special challenges in stratospheric data assimilation

« Dealing with systematic errors

— SSU and cell-pressure leaks (S. Kobayashi)
— AMSU-A and the Zeeman effect
— Impact of GPS radio occultation data

— Quality of the wind analysis
— Use of ozone data in 4D-Var



Bias in the radiance data
The use of SSU for reanalysis

SsuU

I

1972 1979 1998

» The Stratospheric Sounding Unit (SSU) was flown on NOAA satellites
from 1979 — 2006

* These data represent the most important source of climate information
for the upper stratosphere

« SSU is a 3-channel radiometer using a pressure modulation technique
to measure radiation emitted from the absorption band of CO, in the
stratosphere

« Bias changes in each sensor and inter-satellite biases are mainly due to
gas leaks from the pressure cell (S. Kobayashi)



departure (K departure (K)

departure (K)

Inter-satellite biases
SSU uncorrected radiance departures (ERA-40)

SSU channel 1 {uncorrected) 0BS - FG

SSU channel 2 (uncarrected) DBS - FG

,,ﬁ% M

55U channel 3 {uncorrected) 0BS - FG

TIROS-N
NOAAE
NOAA
NOAAS
NOAAD

NOAALl
NOAA14

Global mean differences
between observed and
simulated SSU radiances in
ERA-40 show large
inconsistencies between
different satellites

These inter-satellite biases are
thought to be mainly due to
changes in cell pressure that
occurred during the lifetime of
each satellite



Inter-satellite biases

SSU inconsistencies between NOAA-6 and NOAA-7
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Simultaneous Nadir Overpass
(SNO)

The SNO technique
compares observations from
different satellites which
happen to be viewing the
same place at the same time

Use of the SNO technique
shows that weighting
functions for SSU channels
on different satellites are not
identical

However RTTOV is based on
a single transmittance dataset
for each channel and applies
the transmittance to all the
instruments



SSU estimated changes in cell pressure

« SSU makes use of a pressure
modulation technique to measure the
radiation emitted from the absorption
band of CO2

 Instrument response is rather
sensitive to changes in cell pressure

* Due to a sealing problem, cell
pressure changes significantly during
the lifetime of each instrument
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Impact of cell pressure changes on instrument response

The outgassing from the cell effectively
raises the weighting function

This is thought to be the main cause of
the biases in the SSU radiances

SSU transmittances will be
recalculated for each satellite, taking
into account the estimated cell
pressure changes

An effort to collect all relevant
information on the SSU instrument is
currently being made in collaboration
with the Met Office
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— Why include a stratosphere in NWP models?
— Satellite observations of the stratosphere
— Special challenges in stratospheric data assimilation

« Dealing with systematic errors

— SSU and cell-pressure leaks
— AMSU-A and the Zeeman effect (S. Kobayashi)
— Impact of GPS radio occultation data

— Quality of the wind analysis
— Use of ozone data in 4D-Var



Transition from SSU to AMSU-A in ERA-40:
Both could not be used simultaneously

OB-AN (K) (Arct]i 2, lat =] 80N)
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There was a major discrepancy between
SSU Ch3 on NOAA-14 and AMSU-A Ch14
on NOAA-15, especially in polar winter

Many AMSU-A data were initially rejected
by the first-guess check in ERA-40

SSU Ch3 was blacklisted after 3 July 1999

The weighting functions for these channels
are reasonably similar, and cell pressure
for SSU on NOAA-14 was fairly stable

Could there be a problem with the radiative
transfer model used for AMSU-A ?



Representation of the Zeeman effect for AMSU-A in RTTOV

The line-by-line model used to train RTTOV includes a scalar approximation for the Zeeman effect
This approximation is accurate at the centre of the absorption line,
but it is not appropriate for AMSU-A simulation !

Attenuation rate (dB/Km) of the O2 microwave line K=11- for the magnetic field strength B=0.6e-4(T)
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Representation of the Zeeman effect in RTTOV

Impact on AMSU-A transmittances

Transmittances for stratospheric
channels are much too low when the
scalar approximation is used in
line-by-line simulations

It is preferable not to include the
Zeeman effect at all in RTTOV

Proper representation of the Zeeman
effect requires information about
the electromagnetic field strength
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Representation of the Zeeman effect in RTTOV
Impact on stratospheric temperature analysis

Temperature analysis averaged from 60S to 90S, current RTTOV coefficients for AMSU-A
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Representation of the Zeeman effect in RTTOV

Impact on stratospheric temperature assimilation
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Consistency between AMSU-A and SSU

Mean departures over Antarctic

Radiance difference (SSU3 on NOAA-11 - AMSU-A14 on NOAA-15)
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— Why include a stratosphere in NWP models?
— Satellite observations of the stratosphere
— Special challenges in stratospheric data assimilation

« Dealing with systematic errors

— SSU and cell-pressure leaks
— AMSU-A and the Zeeman effect
— Impact of GPS radio occultation data (S. Healy)

— Quality of the wind analysis
— Use of ozone data in 4D-Var



Toward a consistent stratosphere:
The introduction of GPS

Ray bending angle

LEO

24h global coverage
for COSMIC in its
final configuration




Model Level

Implementation of GPS in ECMWF operations:
Impact in terms of temperature

Global mean temperature increments and analysis
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Implementation of GPS in ECMWF operations:
Impact in terms of bending angles

Background departures for bending angle observations
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Implementation of GPS in ECMWF operations:
Improved fit to radiosonde observations

Background —— Standard deviation Analysis = —— Standard deviation
& 100 hPa temperature departure ===- Mean departure ---- Mean
2
1
Y]

LI O O L L O L O L LB B LB L LU
13 19 25 1 7 13 19 25 31 6 12 18 24 30 6 12 18 24 30 5 11 17 23 29 4 10 16 22 28

SEP OCT NOV DEC JAN FEB
2006 2007
b 100 hPa height
204 : / ¥ J
" | h I
15 -4 o ! T g e B A E 40 r ! '*V ;
10
5_' '. [ b [ ] : ; :
PR SPRPEVE NN : o ohipdadlt s o ba ) WE b
..‘ ﬂ h: Ly Ft -'I? L] w T 2 § ‘raw' .“‘ E}‘ iﬁf ,l:l.. {1* =y -l *
4 iRy N B o ' moga ] ] LIS 3 :“ " L AR 11 ¥ ~ -l 4 2 | a0
NiEAHL *‘g"e {ﬂi""}"' M-.‘E"gf; i ﬁ P ??‘ Uk
-10 1 ¥ ! ‘ﬁ ¢
rrrirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrITrrITITTITTITITITITITITITITTITTTITTTTITITITTITINTTI
13 19 25 1 7 13 19 25 31 6 12 18 24 30 6 12 18 24 30 5 t1 17 23 29 4 10 16 22 28
SEP OCT NOV DEC JAN FEB
2007

2006



Outline

« The scarcity of wind observations

— Quality of the wind analysis
— Use of ozone data in 4D-Var



Quality of stratospheric wind analyses
ERA-40 validated against independent rocketsonde data

ERA-40 monthly mean
zonal wind at 8S
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Quality of stratospheric wind analyses

Age-of-air diagnostic

*  Winds in the lower stratosphere
are reasonably good

(against radiosondes)

. Low-frequency variability is
captured remarkably well

. ERA-40 problems concerning
Brewer-Dobson circulation are
being resolved

*  We think this is mainly due to
4D-Var (improved dynamic
consistency) and the use of
VarBC (conflict resolution)
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Ozone assimilation
Can ozone data be used to infer stratospheric winds?

Total ozone from TOMS ERA-Interim
(August 1996) (TOMS + SBUV + GOME)

Ozonre profiles from sondes and reanalyses
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Introduction of GOME ozone profile data in ERA-Interim
Ozone and temperature increments in the upper stratosphere

Mean ozone mixing ratio [mg/kg] analysis increments for experiment 1189 © N_Pacific
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4D-Var ozone-only analysis experiment
Ozone observation locations on 4 July 1995, 0O UTC

Blue: GOME 15-layer profiles  (~15,000 per day)
Red: SBUV 6-layer profiles (~1,000 per day)



4D-Var ozone-only analysis experiment
The impact of the ozone data on the ozone analysis at 10S

Cross section of 0z mass mix rat 19950703 1500 step 0 Expver 1195
Analysis increment due to GOME data using 12h 4D-Var (Exp 1195)
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4D-Var ozone assimilation
The impact of the ozone data on the temperature analysis at 10S

Cross section of temp 19950703 1500 step 0 Expver 1195
Analysis increment due to GOME data using 12h 4D-Var (Exp 1195)
1hPa . >
3hPa 2
l
d
-1
-2
10hPa .
4
- ‘L :“: 5
184 f; ]
-6.631
40hPa 20— oW = 7 = T &
-10.0S




Ozone assimilation
Can 4D-Var infer stratospheric winds from ozone data?

 The answer is: Not yet.

« Assimilation of ozone profile data causes large and unrealistic T/U/V increments
near the stratopause to accommodate the observed discrepancies between
background and data

» A large part of these discrepancies are due to biases (in both data and model)

* |t is natural for 4D-Var to make adjustments to the flow where constraints are few:
— Lack of wind observations
— Large background uncertainties

* A short-term fix is to disable this feature for the assimilation of ozone and other
trace gases (use the background flow for ozone transport during minimisation)

« Comprehensive ozone bias correction (as for radiances) will help.



Summary

Stratosphere in NWP:

— Better stratosphere — better use of radiance data
— Extend the range of predictability in the troposphere?

Dealing with systematic errors

— No true reference: Large model biases
— Are the data interpreted correctly?
— GPS and other new data (SSMIS, MLS) will help

Scarcity of wind observations

— Constraints embedded in the analysis determine wind increments
— Use of ozone data in 4D-Var:  Requires bias correction



