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What are Advanced Infrared Sounders?

® Infrared Spectrometers with high spectral resolution and
thousands of channels.

® Allows sounding of the atmosphere with improved
vertical resolution and accuracy.

® All such instruments are interferometers (except for the
NASA/EOS Atmospheric Infrared Sounder (AIRS) which is a grating
spectrometer).
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Current and Future High-Spectral Resolution InfraRed

Sounders

Instrument/ No. of
Satellite/ Channels

Launch

AIRS/ 2378
Aqua(EOS-PM),

May 2002

IASI/ 8461
MetOp/

October 2006

CrIS/ 1400

NPOESS/
292 2997

1724

HES/
GOES-R/
2012

Spectral Range

650-2760cm™

645-2760cm™

635-2450cm™

685-1130cm’™
1650-2250cm’™

650-1200
[1650-2150cm™
0)§
1210-1740cm™]
2150-2250

Spectral
Resolution

Type/
Orbit

Grating
Spectrometer/
Polar
Interferometer/
Polar

Interferometer/
Polar

Imaging
Interferometer/
Geostationary
Interferometer?/
Geostationary




Other Examples of Interferometers in Space

® The following have been used for atmospheric sounding but
(for various reasons) their observations have not been
assimilated into NWP models:

- IRIS on NIMBUS 3 & 4 (1969-70)

- IRIS on Mariner 9 (Mars, 1971)

- IRIS on Voyager 1 & 2 (Giant Planets, 1979-89)
- IMG on ADEOS (1996-97)

- CIRS on Cassini (Saturn, 2004-)

- PFS on Mars Express (Mars, 2003-)

- TES on EOS-AURA (limb sounder, 2004-)
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An IASI Spectrum
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1ASI] vs HIRS: The Thermal InfraRed
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AIRS vs HIRS Jacobians

the 15um CO, band

010

100 hPa

=

9O
n 2
¥ <
< ..o
72
dl)
£2g
Cnm
L cl
O £ N
O

WU adnesald

1000 hPa |/ o ===~

0.08

0.08

Jacobian (dBT/dT)

0.04

0.02

0.00

> ECMWF



HIRS vs IASI: Temperature Retrieval Accuracy
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HIRS vs IASI: Humidity Retrieval Accuracy
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HIRS vs IASI: Response to Important Atmospheric

Structure

151 -

-

— Original ]
— o Retrrer h
=== Error an Reirfeval i

]
-—
-'.-- '—-"'
™

r i
? et =

;)
HEE S
e

Temperatura Perturbation {K)

Response to a structure the
observation of which would have
improved the forecast of the
reintensification of Hurricane Floyd
over SW France and SW England
on 12t September 1993. (Rabier et
al., 1996)

T-mirl'l'url Perturbation Iil cE CMWF



Assimilation Configuration
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Current Operational Configurations

AIRS

® Operational at ECMWEF since October 2003

® 324 Channels Received in NRT

® One FOV in Nine

® Up to 155 channels may be assimilated (CO, and H,O bands)

IASI

® Operational at ECMWF since 12t June 2007

® 8461 Channels Received in NRT

® All FOVS received; Only 1-in-4 used

® 366 Channels Routinely Monitored

® Up to 168 channels may be assimilated (CO, band only)
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Assumed Noise for AIRS & IASI Assimilation
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Assimilation Configuration:

Channel Selection
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Why Select Channels?

® The volume of IASI data available is such that we do not
have the computational resources to simulate and
assimilate all these data in an operational timeframe

® We choose channels that we wish to monitor (often with
a view to future use)

® We choose a subset of these channels which we actively
assimilate
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AIRS and IASI Channel Selection

® The 324 AIRS channels distributed by NOAA/NESDIS
were chosen based on inspection of Jacobian widths
and expected noise levels. (Susskind, Barnet &

Blaisdell, 2003).

® All IASI channels are distributed to European Users via
EUMETCAST. Distribution of IASI radiances via GTS is
for 300 channels chosen according to Collard (2007).

® At ECMWEF, for IASI we use the 300 channels above plus
a further 66 channels....

These are the channels that are routinely monitored —
not all are actively assimilated (see later)
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IAS] Channel Selection

® Pre-screen channels

- Ignore channels with large contribution from un-assimilated trace
gases.

® Use the channel selection method of Rodgers (1996)

- Iterative method which adds each channel to the selection based
on its ability to improve a chosen figure of merit (in this case
degrees of freedom for signal).

- Determine the channels which contribute most information to a
number of atmospheric states and view angles.

- Use multiple runs to reduce the effect of non-linearity and to
focus on particular species.

® Add extra channels that the Rogers method cannot
choose

- E.g. Cloud detection channels.
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Pre-screened channels
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Selected Channels (1)

® 30 channels chosen from 15um CO, band considering
temperature assimilation only

® 36 channels from 707-760cm-! region — found to be
particularly important when assimilating AIRS.

® 252 channels considering temperature and water vapour
together

® 15 ozone channels
o
In ECMWEF selection only:

® 22 channels used for monitoring (HIRS analogues and
requested by CNES)

® Another 44 channels in the 707-760cm-! region
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Selected Channels (2)
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Comparison of Actively Assimilated Channels (1)
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Comparison of Actively Assimilated Channels (2)
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Jacobians of 15um CO, Band
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Jacobians of 6.3uym H,0 Band
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Assimilation Configuration:

Cloud Detection

 aa)
\ 4

ECMWF



Cloud detection scheme for Advanced Sounders

A non-linear pattern recognition algorithm is applied to i S |
departures of the observed radiance spectra from a =31 AIRS channel 226 at 13.5micron _4
computed clear-sky background spectra. S (peak about 600hPa)
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Cloud Detection Software is Available

® Cloud detection has been re-written to allow greater
portability and to allow cloud detection of IASI

® |t is available for all to use from the NWPSAF

® http://www.metoffice.gov.uk/research/interproj/nwpsaf/
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Adaptive bias correction and QC

A typical distribution of (Obs-Calc)
departures has a cold / warm tail due
to residual cloud contamination. A
boxcar QC window is often applied to
remove the tail before estimating the
bias.

cold tail

However, successive applications of
this (as in adaptive bias correction
leads to a “dragging” of the mean by
the cold tail. The speed and size of
the drag depends on the number of
iterations and the size of the boxcar
window QC.

0.5K

1.0I§

K
CSECMWF
ation

iter




Cloud Detection and Bias Correction Interact

Clear
Observations

Bias Correction Cloud Detection

Bias Corrected
Observations
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IASI First Guess Departures
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Looking at First Guess Departures

® Observed Radiances minus Radiances Predicted from
Short Range Forecast from Previous Cycle

® First Guess Departures drive the increments

In the following slides:

® Clear-sky first guess departures

® The cloud detection uses the operational bias-correction
® The first-guess departures are NOT bias-corrected
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First-Guess Departure Biases in Water Band
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AIRS & IASI Forecast Impacts
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AIRS Impact at ECMWF
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IASI Impact on SH Geopot. AC
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IASI Forecast Scores Again: 500hPa Geopot. AC
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AIRS Impact at ECMWF in Context — N. Hemis.
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AIRS Impact at ECMWF in Context - S. Hemis.
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Single instrument experiments

Anomaly correlation of 500hPa height for the Southern Hemisphere
(average of 50 cases summer and winter 2003 verified with OPS analyses)
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Challenges
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Water Vapour
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Use of Water Vapour Channels at ECMWF

® We get a small positive impact from using the water
vapour channels

® We use a cloud detection scheme that uses the first
guess departures in the water band itself

- The signal from water vapour can mimic cloud

- The resulting clear channels also tend to be those where water
vapour departures are smallest

® We also assume 2K observation errors.
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O-A Stats for NOAA-16 AMSU-B
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In-band vs Cross-Band Cloud Detection
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But....

® In-band H,O cloud detection with 2K assumed
observation errors give small but positive impact

® Cross-band H,0 cloud detection gives worse impact than
in-band unless assumed errors are > 6K!

® Water observation errors for AIRS are ~0.2K!

For IASI we have a similar story...
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Some Water Discussion (1)

® The water vapour channels have temperature sensitivity
which is highly dependent on the water vapour profile.

® |t is possible that water vapour signal is causing
erroneous temperature increments

® By removing the feedback of temperature information
from the water vapour channels, it has been shown that

this is not the case.
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Some Water Discussion (2)

® We have to greatly inflate water vapour errors to avoid
degrading the model

- This is because of the large number of channels with error
correlations between them (including bias)

® By assuming greatly increasing the water vapour
observation errors we are negating the influence of inter-
channel differences that allow us greater vertical
resolution

- Can we do a better job?
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Cloud
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Cloud

® Cloud in the field of view can greatly affect our ability to
use IR radiances

® Studies have show that the most important areas to
measure for accurate forecasts often have cloud

® We need to identify strategies to deal with cloud
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Dealing with Cloud

® Use only clear fields of view
- Low (~5%) yield
® Use only channels unaffected by cloud

Used now

- Low yield in lower tropospheric channels

® Cloud clearing

- Simulate a clear observation by using multiple fields of view and assume
that only cloud fraction changes between them

® Simultaneous retrieval of cloud optical properties

Under

- These observations are rich in cloud information

A CECMWF

operationally

Investigation



Data Compression
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Data Compression

® Advanced IR sounder radiances contain a lot of
information (~30pieces) ...

® ...but there are two orders of magnitude more channels.
® Hence there is a large amount of redundancy
® How can we use these data more efficiently?
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Why is data compression important?

® Very large data volumes need to be communicated in
near-real time (e.g., EUMETSAT to NWP centres)

® Simulation of spectra (needed for assimilation) is costly

® Assimilation is costly
® Data storage
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Efficient use of channels

® All channels:
- 1000s of Channels
- Not very efficient

® Selected Channels:
- 50-1000 Channels
- Simplest method
- What we currently use
- Throws away a lot of information

® Selected Channels + Grouping (“Superchannels”):
- Reduced Number of Channels
- Lower noise per channel used
- Weighting Functions are Less Sharp?
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Efficient use of channels (contd.)

® Assimilating Retrievals:
- The old way

- We can pass a smaller number of variables to the 3D/4DVar
stage

- No expensive RT modelling required at 3D/4DVar stage

- Two main issues:
= |Inter-level correlations

= A priori data

® Principal Components and Reconstructed
Radiances...
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Spectral data compression with PCA™

The complete AIRS spectrum can be compressed using a
truncated principal component analysis (e.g. 200PCAs v 2300 rads)

Leading eigenvectors (200,say)
of covariance of spectra from
(large) training set

efficient RT model to
M t .
\ e?pec rum calculate PCs directly

*To use PCs in
assimilation requires an

*PCs are more difficult

T —_
P = \% (y — Y) to interpret physically

than radiances

Original

N.B. This is usually performed in
Spectrum yp

noise-normalised radiance space

This allows data to be transported efficiently

A QBGMWES



Spectral data compression and de-
noising
The complete AIRS spectrum can be compressed using a

truncated principal component analysis (e.g. 200PCAs v 2300 rads)

Leading eigenvectors (200,say)
of covariance of spectra from
(large) training set
\ Mean spectrum

_VT _—/ N
p=V (y-Y) Yr =Y+ VD

Reconstructed
spectrum

Original

N.B. This is usually performed in
Spectrum y b

noise-normalised radiance space

Each reconstructed channel is a linear combination of all the original
channels and the data is significantly de-noised.

If N PCs are used all the information is contained in
N reconstructed channels (theoretically)




AIRS Reconstructed Radiances

® Data are supplied in near-real time by NOAA/NESDIS in

the same format as the “real’” radiances.
®

® Based on 200 PCs
® QC Flag supplied
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First Guess Departures for AIRS are Reduced
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Spatial Denoising
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A look at Reconstructed Radiances’
Errors
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First Guess Departure (K)

Improvements in Cloud Detection
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Forecast Impact of Reconstructed Radiances
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“Trace” Gases
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Using AIRS in CO, data assimilation

AIRS observations are used for CO, data assimilation within the GEMS
project. Although the signal is small, it does improve the fit to
independent aircraft observations as shown in the figure. In the next
few months IASI will be implemented in the CO, assimilation as well.

Molokai Island, Hawaii - 11 May 2003
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The flight data over Hawaii
were provided by Pieter Tans,
NOAA/ESRL.
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Assimilation of AIRS O,;-sensitive IR channels

TOC (DU)
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Conclusions

® AIRS and IASI have been operational at ECMWF since October
2003 and June 2007 respectively

® |ASI and AIRS have demonstrated positive impacts on the
ECMWF NWP model and form an important part of the
assimilation system
® To make better use of the full dataset we need to address:
- Water vapour assimilation
- Assimilation in cloudy areas
Efficient use of more of the spectrum

Use over land
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