

LMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Bias estimation of Doppler radar radial wind observations

2.2.2007

K. Salonen

H. Järvinen, R. Eresmaa, S. Niemelä

Motivation

Measurement principle

Doppler radar radial wind:

- is determined from the phase difference between the back-scattered returns from successive radar pulses.
- has a cosine form as a function of azimuth angle, if the wind field is uniform.
 - amplitude of the cosine defines the wind speed
 - phase of the cosine defines the wind direction.

A conceptual example of the behaviour of the radial wind bias

Obs: 17 m/s from 190° True: 15 m/s from 180°

 The bias statistic calculated by summing up the individual OmT values is zero.

Behaviour of the radial wind bias

- Non-zero bias statistic is obtained when
 - wind field is not uniform
 - there is no back-scattering in all azimuth directions
 - the radar is unable to measure all azimuth directions due to obstacles
 - the radar measurement is contaminated by nonmeteorological echoes like birds, ground clutter etc.

Bias estimation method (1)

- Wind direction varies from day to day and from radar to radar.
- No unique reference, such as *u* and *v*.
- To make observations comparable, an arbitrary reference direction is chosen.

Bias estimation method (2)

- Rotation angle ΔΦ: difference between the reference and the model wind direction.
- Azimuth angle corresponding to observation is rotated by adding ΔΦ to it.
- With the rotation, nominal wind direction is the same for all observations.

Bias estimation method (3)

- Calculate an azimuth bin average.
- By least-squares fitting

 $V_r = V_h \cos(\delta - \Phi)$

to the bin averaged observations, estimates for horizontal wind speed and direction are obtained.

Demonstration of the bias estimation method

- One-month data set (January 2002), ca 533 000 superobservations and their model counterparts.
- Unambiguous velocity interval ±48 m/s.
- Raw observations are averaged to superobservations with 10 km resolution in range and 1.7° in azimuth.
- Model counterparts are calculated from HIRLAM model with 9 km horizontal resolution.
- The reference wind direction used in the rotation is 180°.

WMO requirements for upper air wind measurements

 The wind speed bias must be less than 1 m/s and the wind direction bias must be less than 5° for wind speeds less than 15 m/s and less than 2.5° for higher winds.

Verification for the whole data set

- Amplitudes are nearly the same. The obtained wind speed bias is 0.03 m/s.
- Phase difference indicates systematic difference in the wind direction. The obtained wind direction bias is 4°.

An intercomparison of the bias estimates with radiosonde wind bias

Summary

- The introduced method enables estimation of the bias in wind speed and direction for Doppler radar radial wind observations.
- The bias in Doppler radar winds is within the limits of the WMO requirements above the altitude of 1.5 km.
- Bias estimation method is useful for example in model validation.