

Satellite-based real-time monitoring and verification of model forecasted clouds

3rd International Verification Workshop 31.1. – 2.2.2007, ECMWF

Christoph Zingerle, Pertti Nurmi

World Cloud Map 2007-01-30 06:00 UTC - copyright ZAMG

Satellite data:

- Real-time availability
- High temporal resolution
- High spatial resolution
- Spectral resolution

Satellite data:

NOAA AVHRR satellite image

- Re-sampling needed: 1km sub satellite point resolution
- Assumptions:
 - a) Forecast model grid value represents mean of all values in box.
 - b) Neighbouring satellite pixels tend to have similar properties.
- Preprocessed AVHRR image pixel center (calibrated and navigated) is assigned to a corresponding HIRLAM grid-box. Simple arithmetic mean.

Model cloud forecast:

temperature
humidity
cloud fraction
cloud liquid water
cloud ice water
surface data (p, T, q)

- Simulates clear/cloudy multilevel infrared and microwave radiances
- Consistent random-overlap scheme for clouds in different levels (as Hirlam)
- Multiphase cloud field: water / ice / mixed,
 crystal size distribution / aggregates

3rd International Verification Workshop, 32.1. - 2.2.2007, ECMWF

Real-time verification:

Real-time verification:

- WEB-based intranet platform at FMI
- Eyeball-verification / side by side comparison of simulation and observation
- Difference plots, histograms, BIAS and RMSE
- Entity-based verification (CRA-method, Ebert & McBride, 2000)

3rd International Verification Workshop, 32.1. - 2.2.2007, ECMWF

3rd International Verification Workshop, 32.1. - 2.2.2007, ECMWF

3rd International Verification Workshop, 32.1. - 2.2.2007, ECMWF

Entity-based verification

- Entities defined by simple thresholding method
- Entities weighted according to their size
- Forecast moved around in a sub-domain to search for best fit, here minimize MSE (or maximize corr. coeff.) to build vector difference
- Estimates dispalcement, volume (intensity, amplitude) and pattern (residual) error

HIRLAM 18-07 fcst for 2003071701

Satellite observation for 2003071701

Validation statistics for 2003071701 n=22186 Verif. grid=0.200°

	Observed	Forecast
# gridpoints BT ≦ 278K Average BT ⟨K⟩	6461 279.30	7732 278.19
	*****	*****
Mínimum BT (K)	221.66	228.15
Min 0.200° BT (K)	221.66	

Mean abs error = 6.82 K
RMS error = 10.75 K
Correlation coeff = 0.651
Bias score = 1.197
Probability of detection = 0.780
False alarm ratio = 0.348
Hanssen & Kuipers score = 0.608
Equitable threat score= 0.404

CRA 2003071701 300 (paying 280 260 220 240 260 240 260 280 300 Satellite observation

HIRLAM 18-07 fcst 2003071701 n=2088 (50.00°,-3.80°) to (55.60°,17.80°) Verif. grid=0.200° CRA threshold=278.0 K

	Observ	ation 200	3071701	>	
55	283		16	<u>کا ل</u> ے مہرے	
			S42 C	*	
	75 J				283
(50 G)		- 12 13			

	Observation	Forecast
# gridpoints ≦278 K	1891	1626
Average BT (K)	257.80	259.17
Minimum BT (K)	225.71	228.15
	*****	*****

Displacement (E,N) = [9	o.80°,0.00°]	
	Original	Shifted
RMS error (K)	19.21	18.43
Correlation coefficient	0.402	0,466

Error Decomposition:	
Displacement error	7.9%
Volume error	0.5%
Pattern error	91.6%

HIRLAM 18-07 fcst 2003071701 n=588 (54.20°,9.40°) to (59.40°,19.00°) Verif, grid=0.200° CRA threshold=278.0 K

	Observation	Forecast
# gridpoints ≦278 K	301	225
Average BT (K)	274.82	277.80
Minimum BT (K)	233.31	242.17
	*****	*****

Displacement $(E,N) = [-2.00^{\circ},3.20^{\circ}]$

	Original	Shifted
RMS error (K)	20.88	16.65
Correlation coefficient	-0.195	0.263

Displacement may be wrong - correlation not signif.

Error Decomposition:	
Displacement error	36.4%
Volume error	2.0%
Pattern error	61.6%

Conclusions

- Use of satellite observations is a powerful tool for real-time verification
- Eyeball, side-by-side comparison and difference plots are easy to use. Problems can be focused quickly.
- Entity-based verification helps forecasters to distinguish between error sources and to focus on important regions in the forecast.
- Still in 'research mode', but will be 'semi-operational' in the foreseeable future.

Thats all folks!