Two extra components in the Brier Score Decomposition

David B. Stephenson, Caio A. S. Coelho (now at CPTEC), Ian.T. Jolliffe University of Reading, U.K.

Brier score components

To calculate the components (e.g. E(o|f)):

Stratify on ALL issued probability values {f}

OR

Stratify into m distinct probability bins:
More reliable estimates (smoothing);
Can avoid sparseness issues;
Comparison of different forecasting systems.

→ Forecast system is over-confident

Example: Equatorial Pacific SST

88 seasonal probability forecasts of binary SST anomalies at 56 grid points along the equatorial Pacific. Total of 4928 forecasts.

SST o = (SST > 0) $f = \Pr(\hat{o})$ **ENS** OBS **OBS** 81 81 82 82 83 83 84 84 85 з 85 86 86 86 87 2 87 88 88 88 89 89 89 Year 90 Year 90 91 91 n 92 92 93 -1 93 94 94 95 -2 95 96 96 97 97 -3 97 98 98 99 -4 99 99 00 -5 150E 150W 90W 150E 150W 90W 150E 150W 90W Longitude Longitude Longitude SST anomalies (°C)

The probability forecasts were constructed by fitting Normal distributions to the ensemble mean forecasts from the 7 **DEMETER** coupled models, and then calculating the area under the normal density for SST anomalies greater than zero.

Forecast probabilities: f

0.8

0.6

04

0.2

Forecasts and observations at 150W

X = observed binary event: =1 for above average SST Dots = ensemble mean forecasts of SST Solid line = probability forecast estimated from ensemble means

Prob. forecasts stratified on observations

→ Forecast system has discrimination

Brier score for probabilties in m bins

$$BS = \frac{1}{n} \sum_{k=1}^{m} \sum_{j=1}^{n_k} (f_{kj} - o_{kj})^2$$

$$=\overline{o}(1-\overline{o}) + \frac{1}{n}\sum_{k=1}^{m}n_{k}(f_{k}-\overline{o}_{k})^{2} - \frac{1}{n}\sum_{k=1}^{m}n_{k}(\overline{o}_{k}-\overline{o})^{2}$$

$$+\frac{1}{n}\sum_{k=1}^{m}\sum_{j=1}^{n_{k}}(f_{kj}-\overline{f}_{k})^{2}-\frac{2}{n}\sum_{k=1}^{m}\sum_{j=1}^{n_{k}}(o_{kj}-\overline{o}_{k})(f_{kj}-\overline{f}_{k})$$

- = Uncertainty + Reliability Resolution
- + Within-Bin Variance Within-Bin Covariance

For mathematical derivation please refer to: Stephenson, D.B., Coelho, C.A.S., and Jolliffe, I.T., 2007: Two extra components in the Brier Score decomposition, Weather and Forecasting (submitted).

7

Brier score components vs. num. of bins

Within-bin terms and Generalised RESolution

→ GRES=RES-WBV+WBC is more constant than RES

The End

Within-bin Variance of Probabilities

Red dots = probabilities f Blue line = bin-average f Black line = bin-average o (reliability diagram)

6 bins

4 bins

→ Forecast system is over-confident

0.4

0.2

0.0

0.0

0.2

0.8

1.0

8 bins

2 bins

0.6 0.4 0.8 1.0 0.0 0.2 0.4 0.6 Forecast probabilityy Forecast probabilityy → Forecast system is over-confident

1200 1000 800

600 400 200

0

0.4

0.2

0.0