

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

The discrete Brier and ranked probability skill scores

Andreas Weigel, Mark Liniger, Christof Appenzeller

Third International Verification Methods Workshop ECMWF, Reading, UK

1 February 2007

Verification of probabilistic forecasts

Ensemble predictions are not truly probabilistic !!

Verification of probabilistic forecasts

Ensemble predictions are not truly probabilistic !!

□ The RPSS and RPSS_D

□ RPSS_D for weighted multi-models

Conclusions

The RPSS

(Ranked Probability Skill Score)

- Defined over categories (e.g. too cold, normal, too warm)
- Measures degree to which forecasting system outperforms a (typically climatological) reference

$$RPSS = 1 - \frac{\langle RPS \rangle}{\langle RPS_{Cl} \rangle}$$

Deviation of ensemble forecasts from observation

Deviation of climatologic forecasts from observation

The RPSS is negatively biased for small ensemble size !

- □ White noise toy model
- No skill by construction

The Discrete Brier and Ranked Probability Skill Scores

Müller et al. 2005 -> Monte Carlo approach

The Discrete Brier and Ranked Probability Skill Scores

The debiased RPSS_D

Analytical solution

Weigel et al. 2007a

Special case: The debiased BSS_D

Analytical solution Weigel et al. 2007a $\langle BS \rangle$ $BSS_D =$ **Brier score:** Two categories with $\frac{1}{M} \cdot p \cdot (1$ prob p and (1-p) (-p)D

D is *intrinsic (un)reliability* of EPS

The debiased RPSS_D

- □ White noise toy model
- No skill by construction

The Discrete Brier and Ranked Probability Skill Scores

The debiased BSS_D

- □ ECMWF System 2 seasonal forecasts (T2m)
- □ 2 equiprobable forecast categories

The Discrete Brier and Ranked Probability Skill Scores

□ The RPSS and RPSS_D

□ **RPSS_D** for weighted multi-models

Conclusions

RPSS_D for multi-models

$$\begin{array}{c} \mbox{RPSS}_{D} = 1 - \frac{\langle \mbox{RPS} \rangle}{\langle \mbox{RPS}_{Cl} \rangle} \\ \mbox{What is M for multi-models?} & D = \frac{1}{M} \cdot D_{0}(p_{1},p_{2},...,p_{K}) \\ \mbox{N: Number of models} \\ \mbox{M}_{n} : & \mbox{ensemble size of n-th model} \\ \mbox{w}_{n} : & \mbox{weight of n-th Model} \\ \mbox{Weigel et al. 2007b} \end{array}$$

NCCR CLIMATE

Swiss Climate Research

RPSS_D for multi-models

- Combining two white noise toymodels (9-member ensembles)
- □ Multi-model with zero skill by construction

The Discrete Brier and Ranked Probability Skill Scores

RPSS_D for multi-models

- □ Combining two white noise toymodels (9-member ensembles)
- □ Multi-model with zero skill by construction

The Discrete Brier and Ranked Probability Skill Scores

Application (DEMETER data)

multi-model better than best participating single model (measured with RPSS)

Opplication (DEMETER data)

multi-model better than best participating single model (measured with RPSS_D)

Both participating single models are highly under-dispersive

Weigel et al. 2006 (Proc. THORPEX)

RPSS (BSS) is negatively biased for small ensemble sizes

Bias can be removed by adding the EPS's "intrinsic unreliability" to the climatological reference

=> Debiased RPSS_D (BSS_D)

RPSS_D can be generalized to multi-model ensembles by introducing an **effective ensemble size**

RPSS measures actual skill of raw ensemble forecasts

RPSS_D measures "true" skill of forecasting system

Müller WA et al 2005: A debiased ranked probability skill score to evaluate probabilistic ensemble forecasts with small ensemble sizes. *J.Clim.*, **18**, 1513–1523.

- Palmer TN et al 2004: Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). *Bull. Amer. Meteor. Soc.*, **85**, 853–872.
- Rajagopalan B et al 2002: Categorical climate forecasts through regularization and optimal combination of multiple GCM ensembles. *Mon. Wea. Rev.*, **130**, 1792-1811
- Weigel AP et al 2006: Can multi-model combination really enhance prediction skill of probabilistic ensemble forecasts? *Proc. Second THORPEX International Science Symposium (STISS), Landshut, Germany,* 256-257
- Weigel AP et al 2007a: The discrete Brier and ranked probability skill scores. Mon. Wea. Rev. 135, 118–124.
- Weigel AP et al 2007b: Generalization of the discrete Brier and ranked probability skill scores for weighted multimodel ensemble forecasts. *Mon. Wea. Rev.* (accepted)

The Discrete Brier and Ranked Probability Skill Scores

The debiased RPSS_D

Müller et al. 2005 **Solution** Weigel et al. 2007a $\langle \text{RPS} \rangle$ $RPSS_D = 1$ RPS_{Cl} **Special case 1:** $\frac{K^2-1}{6K}$ K equiprobable Dforecast categories

M: Ensemble size

The meaning of D

"Intrinsic (un)reliability"

The Discrete Brier and Ranked Probability Skill Scores

The BSS_D for multi-models

- System 2 forecasts combined with GloSea forecasts (1987-2001)
- Verification against ERA40
- T2m for JJA, lead-time 1 month, eastern Europe
- □ 2 equiprobable forecast categories (i.e. Brier Score situation)

The BSS_D for multi-models

- System 2 forecasts combined with GloSea forecasts (1987-2001)
- Verification against ERA40
- T2m for JJA, lead-time 1 month, eastern Europe
- □ 2 equiprobable forecast categories (i.e. Brier Score situation)

Opplication (DEMETER data)

Investigate where multi-model ensembles *locally* outperform the participating single models

Consider two models (ECMWF and UKMO) from the DEMETER data set (Palmer et al., 2004)

Seasonal JJA-forecasts of T 2m

Combine them to weighted multi-model ensembles using the method of Rajagopalan et al. (2002)

Verification from against ERA40 data (1960-2001)

