Developments in Object-based Verification: Model Intercomparison and Incorporation of the Time Dimension

Chris Davis, Barbara Brown and Randy Bullock NCAR Boulder, Colorado, USA

Comparison of Rainfall Forecasts

Hourly rainfall in hundredths of inches

Data, Models and Method

 Study Domain: United States, Rocky Mountains (west) to Appalachian Mountains (east)

 Purpose: Evaluate 2 cores of the Weather Research and Forecasting (WRF) model using object-based verification methods

Advanced Research WRF (ARW), 4-km grid spacing

Nonhydrostatic Mesoscale Model (NMM), 4.5-km grid spacing

■Time Period: 18 April – 4 June, 2005

■30-h forecasts initialized at 00 UTC from Eta initial condition

Data: Hourly accumulated precipitation from NCEP – Stage IV on 4-km grid

Method: MODE object identification and attribute definition

Examine statistics of unmatched objects

Perform merging and matching: compare stats of matched objects

Kain, J. S., S. J. Weiss, M. E. Baldwin, G. W. Carbin, D. Bright, J. J. Levit, and J. A. Hart, 2005: Evaluating high-resolution configurations of the WRF model that are used to forecast severe convective weather: The 2005 SPC/NSSL Spring Experiment. 17th Conference on Numerical Weather Prediction. American Meteorological Society, Paper 2A.5

Objects and Their Attributes

$$g(x,y) = \sum_{(u,v)\in G} \phi(u,v) f(x-u,y-v)$$

Thresholding: Rainfall > T (1.25 mm/h)
Compute geometric attributes
Restore precip values inside object, examine distribution (box and whisker plot)

- Intensity (percentile value)
- **Area** (# grid points > T)
- Centroid
- Axis angle (rel. to E-W)
- Aspect ratio (W/L)
- Fractional Area

Merging and Matching

•Merging of objects in forecast and observed fields (done separately for each)

► Based entirely on separation of object centroids (Less than min(400 km, $W_1 + W_2$)

>Area, length and width of merged areas = sum of objects merged

Position = weighted average of objects merged (weighting by area):

$$x_{merged} = \frac{A_1}{A_1 + A_2} x_1 + \frac{A_2}{A_1 + A_2} x_2$$

•Matching of forecast and observed objects

Similar criteria for merging, except threshold is min(200 km, $W_1 + W_2$)

Attributes:

Fractional Area (top panel): Fraction of the minimum bounding rectangle that an object occupies

Aspect ratio (bottom panel): W/L

Abscissa: object size = square root of object area, expressed as number of grid cells and as kilometers.

➢Objects too narrow

- •Insufficient stratiform precip?
- •Response to frontal forcing?

Error Distributions

Both models produce areas that are too large NMM has more large errors

Objects in Three Dimensions

(x,y,t)

Centroid

and Axis

2-D Slices of 3-D Objects

Conclusions

- Models make rain areas too narrow; lack of stratiform rain?
- Significant positive bias in size of rain areas in both models, larger for NMM
- Too much heavy rain. Rainfall distributions too broad.
- CSI for matching lowest in the afternoon, slightly higher for ARW.
- Not enough moderate (stratiform) rainfall
- Object definitions generalizable to 3-D.
 - •Timing and propagation errors can be assessed
 - •Fewer objects to compare