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Verifying the Relationship between
Ensemble Forecast Spread and Skill _
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A—Greater.accuracy of ensemble mean
forecast (half the error variance of single
forecast)

2) Likelihood of extremes
3) Non-Gaussian forecast PDF’s

wentatlon of
orecast uncertainty




Probabllity

“skill” ‘error”




ECMWEF Brahmaputra catchment Precipitation Forecasts
vs TRMM/CMORPH/CDC-GTS Rain gauge Estimates
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How to Verify?

-- rank histogram?
No. (Hamill, 2001)
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-- ensemble spread-
forecast error
correlation?
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- Propose 3 alternative scores
1) “normalized” spread-skill correlation
2) “binned” spread-skill correlation
3) “binned” rank histogram

ﬁnaderaﬂons: — 2
| variance of the forecast spread? '

-- sufﬂue [

-- outperform heteroscedastic error model?

-- account for observation uncertainty and under-
sampling
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= Setl (L1 measures): o —e——
© = Error measures:

= absolute error of the ensemble mean forecast
= absolute error of a singie ensemble member

— Spread measures:

= ensemble standard deviation

= mean absolute difference of the ensembles about the ensembie
mean

= square error of the ensemble mean forecast
= square error of a single ensemble member

— Spread measures:
= ensemble variance



Spread-S«ll Correlation ...
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- Governing ratio, g:

(s = ensemble spread: variance, standard deviation, etc.)

(s)’ (s)’

Limits: I <52> <S>2 T var(s)

Set |

1 What's the Point?

: -- correlation depends on
— 0, r . how spread-skill defined
-- depends on stability properties
of the system being modeled
-- even in “perfect” conditions,
d—0, r—>.1/3 correlation much less than 1.0

r—>0

g—>1 r—>0



How can you assess whether a

e

= Positive correlation? Provides an indication,
but how close to a “perfect model”.

= Uniform rank histogram? No guarantee.
1) One option -- “normalize” away the

ﬁm’sstability dependence via a skill-
- Firest = Tres —
SS X100%

I

I

perf Fet



two other options ...

dispersion bins,
then:

2) Average the error
values in each bin,
then correlate

3) Calculate individual
rank histograms for

each bin, convert to a
scalar measure
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" Tyerf -~ fandomly choose one ensemble member
as verification
" 1. - three options:
1) constant “climatological” error distribution (r --> 0)
2) “no-skill” -- randomly chosen verification

ﬁheteré"s’éedastic model (for rrorW
f

orecast
Probability

0 PPT
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Heteroscedastic Error model dressing the Ensemble Mean

Forecast (ECMWF Brahmaputra catchment Precipitation)

From fit
heteroscedastic
error model,
ensembles can be
generated
(temporally
uncorrelated for
clarity)
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Correlation

Skill Score

Option 1: *Norrmalized” Spread-sxill Correlation

Forecast (black); Perfect Model (blue); no-skill (red)
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Operational Forecast
spread-skill
approaches “perfect
model”

However,
heteroscedastic model
outperforms

Skill-scores show utility
In forecast ensemble
dispersion improves
with forecast lead-time

However, “governing
ratio” shows utility
diminishing with lead-
time



Skill Measure (ahs err mean) [mm]

Skill Measure (abs err mean) [mm)

Option 2: *oinned” Spread-skill Correlation
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1 day

1 2 3 4
Spread (mean abs. dev.) [mm)

7-day Forecasts

7 day

1 2 3 4
Spread (mean abs. dev.) [mm)

Skill Measure (abs err mean) [mm)

Skill Measure (abs err mean) [mm]|

4-day Forecasts

i 4 day

] 2 3
Spread (mean abs. dev.) [mm]

10-day Forecasts

i 10 day

1 2 3

-

Spread (mean abs. dev.) [mm]

“perfect model”
(blue) approaches
perfect correlation

“no-skill” model
(red) has expected
under-dispersive
“U-shape”
ECMWEF forecasts
(black) generally
under-dispersive,
improving with
lead-time
Heteroscedastic
model (green)
slightly
better(worse) than
ECMWEF forecasts
for short(long)
lead-times



Probability/(unit skill memsure)

Probability/(unit skill measure)

Skill Measure

Oo']on 2. PDF's of “binned” spread-s
accounting for sa nolmg and verification unc
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“perfect model” (blue)
PDF peaked near 1.0
for all lead-times

“no-skill” model (red)
PDF has broad range
of values

ECMWEF forecast
PDF (black) overlaps
both “perfect” and
“no-skill” PDF’s
Heteroscedastic
model (green) slightly
better(worse) than
ECMWF forecasts for
short(long) lead-times



Conclusions

p—

*'_‘_“Dﬁpendent onlstablllty” properties of envwonmental system
~ = _J3alternatives.
1) “normalized” (skill-score) spread-skill correlation
2) “binned” spread-skill correlation
3) “binned” rank histogram
= ratio of moments of “spread” distribution also indicates utility

-- If ratio --> 1.0, fixed “climatological” error distribution may provide
a far cheaper estimate of forecast error

ﬂ;uer test of ut|I|ty of forecast dispersion is a comparison with a
odel => a statistical error model may

L portant to account for observation and sampling uncertainties
when doing a verification

Contact hopson@ucar.edu for more information and publications
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