The effect of ensemble size on verification measures for binary-event forecasts

Chris Ferro

Walker Institute Department of Meteorology University of Reading

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Brier score
- Effect of ensemble size
- RPS, Logarithmic and ROC scores

Brier score definition

Times $t = 1, \ldots, n$

Binary observations $I_t = 0$ or 1

Probabilistic forecasts P_t

Brier score

$$B=\frac{1}{n}\sum_{t=1}^{n}(P_t-I_t)^2$$

Brier (1950, MWR)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Brier score definition

Times $t = 1, \ldots, n$

Binary observations $I_t = 0$ or 1

Probabilistic forecasts

 P_t = proportion of ensemble members that forecast the event

Brier score

$$B(m) = \frac{1}{n} \sum_{t=1}^{n} (P_t - I_t)^2$$

for ensemble size m.

Brier (1950, MWR)

(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
</p

Ensemble size effect

Assume 1. data are stationary 2. ensemble members are exchangeable

Expected Brier score

$$E[B(m)] = E[B(\infty)] + \frac{A}{m}$$

Richardson (2001, QJRMS)

A measures sharpness

$$A \propto \frac{1}{4} - E\left[\left(P - \frac{1}{2}\right)^2\right]$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Ensemble size effect

Assume 1. data are stationary 2. ensemble members are exchangeable

Expected Brier score

$$E[B(m)] = E[B(\infty)] + \frac{A}{m}$$

Richardson (2001, QJRMS)

A measures sharpness

$$A \propto \frac{1}{4} - E\left[\left(P - \frac{1}{2}\right)^2\right]$$

▲ロト ▲圖 ▶ ▲目 ▶ ▲目 ▶ ▲目 ● のへで

Ensemble size effect

Assume 1. data are stationary 2. ensemble members are exchangeable

Expected Brier score

$$E[B(m)] = E[B(\infty)] + \frac{A}{m}$$

Richardson (2001, QJRMS)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

A measures sharpness

$$A \propto \frac{1}{4} - E\left[\left(P - \frac{1}{2}\right)^2\right]$$

Estimate Brier score for other ensemble sizes

Given ensemble size *m*, estimate

$$E[B(M)] = E[B(\infty)] + \frac{A}{M}$$
$$= E[B(m)] - \frac{A}{m} + \frac{A}{M}$$

Unbiased estimator for E[B(M)] is

$$B(m)-\frac{M-m}{M(m-1)n}\sum_{t=1}^{n}P_t(1-P_t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Estimate Brier score for other ensemble sizes

Unbiased estimator for E[B(M)] is

$$B(m)-\frac{M-m}{M(m-1)n}\sum_{t=1}^{n}P_t(1-P_t)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Compare Brier scores

Compare two sets of forecasts:

 P_t with ensemble size m P_t^* with ensemble size m^*

Identical verifying observations

・ロト ・ 同ト ・ ヨト ・ ヨ

Compare Brier scores

Compare two sets of forecasts:

 P_t with ensemble size m P_t^* with ensemble size m^*

Identical verifying observations

(日) (字) (日) (日) (日)

Compare Brier scores

Compare two sets of forecasts:

 P_t with ensemble size m P_t^* with ensemble size m^*

Identical verifying observations

Bootstrap confidence interval for

 $E[B(M)] - E[B^*(M)]$

(日) (日) (日) (日) (日) (日) (日)

Other scores

Multi-category Brier / Ranked probability scores

$$\frac{1}{K}\sum_{k=1}^{K}B_k(m)$$

cf. Müller et al. (2005, JClim)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Logarithmic score

$$S(m) = -\sum_{t=1}^{n} [I_t \log P_t + (1 - I_t) \log(1 - P_t)]$$

Area R(m) under ROC curve

▶ Unbiased estimators for E[S(M)] and E[R(M)] iff $M \le m$

Other scores

Multi-category Brier / Ranked probability scores

$$\frac{1}{K}\sum_{k=1}^{K}B_{k}(m)$$
 cf. Müller et al. (2005, JClim)

Logarithmic score

$$S(m) = -\sum_{t=1}^{n} [I_t \log P_t + (1 - I_t) \log(1 - P_t)]$$

- Area R(m) under ROC curve
- ▶ Unbiased estimators for E[S(M)] and E[R(M)] iff $M \le m$

(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
</p

Conclusion

Easy to estimate effect of ensemble size on Brier scores

Can use confidence intervals to compare scores

Also possible for RPS, Logarithmic and ROC scores

Paper and R code available at

www.met.rdg.ac.uk/~sws02caf

c.a.t.ferro@reading.ac.uk

(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
</p