Using Validation Sites and Field Campaigns to Evaluate Observational and Model Bias

Tom Ackerman

DOE Atmospheric Radiation Measurement Program Pacific Northwest National Laboratory, Richland, WA USA Ackerman@pnl.gov

Bias errors in measurements

- Most difficult errors to diagnose
 - By definition, if we know about a bias error, we remove it
- How do we find them?
 - Instrument to instrument comparison (water vapor) But, often have only one instrument or we cannot sort out source of inconsistency
 - Instrument to model comparison (diffuse flux, MPACE) But, which do we trust? (instrument, of course!)
 - Consistency among multiple measurements (singlescatter albedo, aerosol closure experiments)

But, can we reduce solution to bias in only one instrument?

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 10

Story #1: Water vapor

- ARM has invested more effort and money in the study of water vapor measurements than any other quantity
- Multiple instrumentation
- FIVE intensive campaigns
- Many science team research projects
- Countless hours of debate

Revercomb et al., 2003, BAMS (and a host of references) Soden et al., 2005, JGR and references therein

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 12

TOM ACKERMAN: USING VALIDATION SITES AND FIELD CAMPAIGNS ...

Instrument	Primary quantity observed and typical resolutions	References
AERI retrievals	Water vapor mixing ratio profiles: 10 min, 100-m resolution, 24 h day-1	Feltz et al. (1998); Turner et al. (2000)
Cimel sun photometer (CE-318)	Total precipitable water vapor: every quarter air mass for air masses greater than 2, and every 15 min for airmasses less than 2	Holben et al. (1998); Schmid et al. (2001)
GPS at Lamont, OK	Total precipitable water vapor: 30-min resolution, 24 h day-1	Wolfe and Gutman (2000); King and Bock (1996); Rotacher (1992)
In situ probes (Vaisala HMP35D*)	Water vapor mixing ratio: at surface, 25 m, and 60 m; 1-min resolution	Richardson and Tobin (199 Richardson et al. (2000)
MFRSR	Total precipitable water vapor: I-min resolution during daytime	Harrison et al. (1994); Schmid et al. (2001)
MWR (Radiometrics WVR-1100)	Total precipitable water vapor: 20-s resolution, 24 h day ⁻¹	Liljegren and Lesht (1996): Liljegren (1999)
Radiosonde (Vaisala RS-80H)	Relative humidity profiles: 10-m resolution, eight launches per day	Turner et al. (2003); Lesht (1998)
Raman lidar (CARL)	Water vapor mixing ratio profiles: 10 min, 78-m resolution, 24 h day- ¹	Goldsmith et al. (1998); Turner and Goldsmith (199
RSS	Total precipitable water vapor: I-min resolution during daytime (installed after the 1996 WVIOP)	Harrison et al. (1999): Schmid et al. (2001)

TABLE 3. Additional instrumentation brought to the ARM SGP central facility for the 1996 and 1997 WVIOPs. Primary quantity observed and typical resolutions References Instrument Matsumoto et al. (1987): Schmid et al. (2001) AATS-6 Total precipitable water vapor: 12-s resolut during daytime (during 1997 WVIOP only) Chilled mirrors (Meteor AG) on kite and tethersonde Relative humidity profiles: 2-s data during most evenings Porch et al. (1998); Turner and Goldsmith (1999) Richardson and Tobin (1998); Richardson et al. (2000) Chilled mirrors on tower (General Eastern D2/M4) Dewpoint temperature: 1-min resolution, 24 h day-14 GPS receiver at SGP Central Facility Wolfe and Gutman (2000) Total precipitable water vapor: 30-min data, 24 h day-! Water vapor density profiles: 30 s, 75-m resolution during multiple 12-h periods (operations restricted by FAA)* Wulfmeyer and Bösenberg MPI-DIAL (1998): Linné et al. (2001) NOAA ETL 20.6/31.65-GHz Atmospheric brightness temperatures and total microwave radiometer (ETL 1) precipitable water vapor;⁴ 30-s resolution, 24 h day⁻¹ Hogg et al. (1983); Han and Westwater (2000) Atmospheric brightness temperatures and total precipitable water vapor: 30-s resolution, 24 h day⁻¹ (during 1997 WVIOP only) NOAA ETL 23.87/31.65-GHz microwave radiometer (ETL 2) Hogg et al. (1983); Han and Westwater (2000) Scanning AERI in trailer Downwelling infrared radiance: 8 min, 1-wavenumber resolution, 24 h day⁻¹ Feltz et al. (1998) SRL Water vapor mixing ratio profiles: I min, 75-m resolution primarily at night Whiteman and Melfi (1999); Whiteman et al. (2001) Pacific Northwest National Laboratory U.S. Department of Energy 14 Battelle

<section-header><section-header><section-header><section-header><section-header><image><image><page-footer>

80

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 41

Surface and TOA Flux Comparisons (RT model and Data)

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 48

